• Title/Summary/Keyword: hammer anvil method

Search Result 2, Processing Time 0.015 seconds

Effect of Al Content on Phase Transformation of Rapidly Solidified Binary Ti-Al Alloys

  • Oh, Chang-Sup;Kim, Sang-Wook;Han, Chang-Suk
    • Korean Journal of Materials Research
    • /
    • v.27 no.1
    • /
    • pp.8-11
    • /
    • 2017
  • Binary Ti-Al alloys containing 50 to 60 atomic percent aluminum are rapidly solidified by hammer anvil method under an argon atmosphere. Constituent phases in each alloy are identified by X-ray diffractometry and microstructures of the alloys are investigated using a transmission electron microscope. In alloys with aluminum content between 50 and 54 percent, a second phase exists besides TiAl(${\gamma}$); this second phase is identified as $Ti_3Al$(${\alpha}2$). The ${\alpha}2$ phase is observed in two types of morphology. One is as fine lamellar alternating with ${\gamma}$ and the other is as a particle. It is concluded that the existence of a metastable phase with the morphologies stated above should arise from a higher quenching rate attained by the hammer anvil method as compared to the conventional roll or splat-quench method. Implications of the above observation are discussed with respect to the phase relations in the Ti-Al binary system; these implications are still controversial in many respects.

A numerical investigation for the characterization of the impact forming machines (수치해석을 이용한 충격성형기계의 특성 분석)

  • Yoo, Y.H.;Yang, D.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.223-226
    • /
    • 1995
  • A three-dimensional elastic-plastic finite element analysis using the explicit time integration method has been performed for the characterization of theimpact forming machines. The block upsetting using a forging hammer has been analyzed. The effects of machine type, work capacity of equipment and the mass ratio in an anvil-type hammer have been studied through the analysis.

  • PDF