• Title/Summary/Keyword: halofantrine

Search Result 3, Processing Time 0.018 seconds

Evaluation of Genotoxicity of Three Antimalarial Drugs Amodiaquine, Mefloquine and Halofantrine in Rat Liver Cells

  • Farombi E. Olatunde
    • Environmental Mutagens and Carcinogens
    • /
    • v.25 no.3
    • /
    • pp.97-103
    • /
    • 2005
  • The genotoxic effect of antimalarial drugs amodiaquine (AQ), mefloquine (MQ) and halofantrine (HF) was investigated in.at liver cells using the alkaline comet assay. AQ, MQ and HF at concentrations between $0-1000{\mu}mol/L$ significantly increased DNA strand breaks of rat liver cells dose-dependently. The order of induction of strand breaks was AQ>MQ>HF. The rat liver cells exposed to AQ and HF (200 and 400 ${\mu}mol/L$) and treated with (Fpg) the bacterial DNA repair enzyme that recognizes oxidized purine showed greater DNA damage than those not treated with the enzyme, providing evidence that AQ and HF induced oxidation of purines. Such an effect was not observed when MQ was treated with the enzyme. Treatment of cells with catalase, an enzyme inactivating hydrogen peroxide, decreased significantly the extent of DNA damage induced by AQ, and HF but not the one induced by MQ. Similarly quercetin, an antioxidant flavonoid at $50{\mu}mol/L$ attenuated the extent of the formation of DNA strand breaks by both AQ and HE. Quercetin, however, did not modify the effects of MQ. These results indicate the genotoxicity of AQ, MQ and HF in rat liver cells. In addition, the results suggest that reactive oxygen species may be involved in the formation of DNA lesions induced by AQ and HF and that, free radical scavengers may elicit protective effects against genotoxicity of these antimalarial drugs.

  • PDF

Effect of Ketoconazole, a Cytochrome P450 Inhibitor, on the Efficacy of Quinine and Halofantrine against Schistosoma mansoni in Mice

  • Seif el-Din, Sayed Hassan;Abdel-Aal Sabra, Abdel-Nasser;Hammam, Olfat Ali;El-Lakkany, Naglaa Mohamed
    • Parasites, Hosts and Diseases
    • /
    • v.51 no.2
    • /
    • pp.165-175
    • /
    • 2013
  • The fear that schistosomes will become resistant to praziquantel (PZQ) motivates the search for alternatives to treat schistosomiasis. The antimalarials quinine (QN) and halofantrine (HF) possess moderate antischistosomal properties. The major metabolic pathway of QN and HF is through cytochrome P450 (CYP) 3A4. Accordingly, this study investigates the effects of CYP3A4 inhibitor, ketoconazole (KTZ), on the antischistosomal potential of these quinolines against Schistosoma mansoni infection by evaluating parasitological, histopathological, and biochemical parameters. Mice were classified into 7 groups: uninfected untreated (I), infected untreated (II), infected treated orally with PZQ (1,000 mg/kg) (III), QN (400 mg/kg) (IV), KTZ (10 mg/kg)+QN as group IV (V), HF (400 mg/kg) (VI), and KTZ (as group V)+HF (as group VI) (VII). KTZ plus QN or HF produced more inhibition (P<0.05) in hepatic CYP450 (85.7% and 83.8%) and CYT b5 (75.5% and 73.5%) activities, respectively, than in groups treated with QN or HF alone. This was accompanied with more reduction in female (89.0% and 79.3%), total worms (81.4% and 70.3%), and eggs burden (hepatic; 83.8%, 66.0% and intestinal; 68%, 64.5%), respectively, and encountering the granulomatous reaction to parasite eggs trapped in the liver. QN and HF significantly (P<0.05) elevated malondialdehyde levels when used alone or with KTZ. Meanwhile, KTZ plus QN or HF restored serum levels of ALT, albumin, and reduced hepatic glutathione (KTZ+HF) to their control values. KTZ enhanced the therapeutic antischistosomal potential of QN and HF over each drug alone. Moreover, the effect of KTZ+QN was more evident than KTZ+HF.

Antimalarial Effects of Areca catechu L.

  • Jiang, Jing-Hua;Jung, Suk-Yul;Kim, Youn-Chul;Shin, Sae-Ron;Yu, Seung-Taek;Park, Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.2
    • /
    • pp.494-498
    • /
    • 2009
  • The emergence and spread of drug-resistant malaria parasites is a serious public health problem in the tropical world. Useful antimalarial drugs such as chloroquine have resistance in the world now. Moreover, other antimalarialdrugs such as mefloquine, halofantrine, atovaquone, proguanil, artemether and lumefantrine retain efficacy but have limitations, one of which is their high cost. New antimalarial drugs are clearly needed now. Cytotoxicity assay and susceptibility assay were performed for the selectivity of herb extracts in vitro. On the basis of high selectivity, 4-day suppressive test and survival test were progressed in Plasmodium berghei-infected mice. The selectivity of Areca catechu L. (ACL) and butanol extract of ACL (ACL-BuOH extract) were 3.4 and 3.0 in vitro, respectively. Moreover in vivo, 4-day suppressive test showed 39.1 % inhibition effect after treated with 150 mg/kg/day ACL-BuOH to P. berghei-infected mice. Survival test also showed 60% survival rate with ACL-BuOH-treated group while all other group mice died. In this study, ACL and ACL-BuOH were investigated for antimalarial activity in vitro and in vivo and they showed a potent antimalarial activity. In particular,ACL-BuOH could specifically lead higher survival rate of mice in vivo. Therefore ACL-BuOH would be a candidate of antimalarial drugs.