• Title/Summary/Keyword: half-bridge circuit

Search Result 247, Processing Time 0.025 seconds

High Power Factor Dual Half Bridge Series Resonant Inverter for an Induction Heating Appliance with Multiple Loads (다부하를 갖는 유도가열기기를 위한 고역률 이중 하프브릿지 직렬공진 인버터)

  • 정용채
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.4
    • /
    • pp.307-314
    • /
    • 1998
  • A novel high power factor Dual Half Bridge Series Resonant Inverter (DHB-SRI) for an induction heating appliance with multiple loads is proposed to remove the interferential acoustic noise caused by the difference between operating frequencies of adjacent loads. The circuit enables independent full power range control of two induction heating elements by one inverter circuit and has minimum switching losses due to the zero voltage switching characteristic. According to the mode analysis, I will explain the operation of the proposed circuit. To evaluate the required cooling capacity, loss analysis is performed through deriving some loss equations. In order to obtain the power factor correction capability and to lessen the system size, suitable design guides are given. Using the designed values, the proto-type circuit with 2.8kW power consumption for each induction heating element is built and tested to verify the operation of the proposed circuit.

  • PDF

Design Considerations of Asymmetric Half-Bridge for Capacitive Wireless Power Transmission

  • Truong, Chanh Tin;Choi, Sung-Jin
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.139-141
    • /
    • 2019
  • Capacitive power transfer has an advantage in the simplicity of the energy link structure. So, the conventional phase -shift full bridge sometime is not always the best choice because of its complexity and high cost. On the other hand, the link capacitance is usually very low and requires high-frequency operation, but, the series resonant converter loses zero-voltage switching feature in the light load condition, which makes the switching loss high especially in CPT system. The paper proposes a new low-cost topology based on asymmetric half-bridge to achieve simplicity as well as wide zero voltage switching range. The design procedure is presented, and circuit operations are analyzed and verified by simulation.

  • PDF

A Novel Half-Bridge Resonant Inverter With Load Free-wheeling Modes (부하 환류모드를 갖는 새로운 하프 브리지 공진형 인버터)

  • Yeon Jae-Eul;Cho Kyu-Min;Kim Hee-Jun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.3 s.303
    • /
    • pp.71-80
    • /
    • 2005
  • This paper proposes a new circuit topology of the half-bridge resonant inverter and presents its digital control scheme. As the proposed half-bridge inverter can be operated in the load-freewheeling modes, pulse width modulation (PWM) control method can be used for the output power control. The proposed half-bridge inverter can keep unity output displacement factor under the load-impedance varying conditions, if a new PWM control scheme based on the resonant frequency tracking algorithm is adopted. In this paper, the operation principle, electrical characteristics and detailed digital control scheme of the proposed half-bridge resonant inverter and loss analysis comparing with a conventional half bridge inverter is described. The experimental results of the proto-type experimental setup to verify the validity of the proposed half-bridge resonant inverter are presented and discussed.

Digital Control of Two-Stage Electronic ballast for HID Lamps (2-단계 HID 램프용 전자식 안정기의 디지털 제어)

  • Lee, Woo cheol
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.229-230
    • /
    • 2013
  • The conventional Three-Stage electronic ballast is stable, but Two-Stage electronic ballast has been researching because of efficiency. Three-Stage electronic ballast is consisted of PFC circuit, buck converter, and inverter circuit, but Two-stage is consisted of PFC circuit, Buck-Inverter full bridge circuit. The Buck-Inverter full bridge inverter consists of two half bridge inverters for low frequency switching, and high frequency switching. In the case of street lamp it is far from a lamp to a ballast, the conventional pulsed high voltage ignitor can not turn on the HID lamps because of reduction of ignition voltage. Therefore, it needs to do the research on a resonant ignition to turn on the HID lamps. Therefore, in the Two-Stage electronic ballast which has the resonant tank for ignition, the transient resonant current because of low frequency changing is analyzed, the novel algorithm is proposed to resuce the transient current.

  • PDF

Transient Current Control of Two-Stage Electronics Ballast for HID Lamps (HID 램프용 Two-Stage 전자식 안정기의 과도 전류 제어)

  • Lee, Woo-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • The conventional Three-Stage electronic ballast is stable, but Two-Stage electronic ballast has been researching because of efficiency. Three-Stage electronic ballast is consisted of PFC circuit, buck converter, and inverter circuit, but Two-stage is consisted of PFC circuit, Buck-Inverter full bridge circuit. The Buck-Inverter full bridge inverter consists of two half bridge inverters for low frequency switching, and high frequency switching. In the case of street lamp it is far from a lamp to a ballast, the conventional pulsed high voltage ignitor can not turn on the HID lamps because of reduction of ignition voltage. Therefore, it needs to do the research on a resonant ignition to turn on the HID lamps. Therefore, in the Two-Stage electronic ballast which has the resonant tank for ignition, the transient resonant current because of low frequency changing is analyzed, the novel algorithm is proposed to resuce the transient current.

A High Efficiency ZVS PWM Asymmetrical Half Bridge Converter for Plasma Display Panel Sustaining Power Modules

  • Han Sang-Kyoo;Moon Gun-Woo;Youn Myung-Joong
    • Journal of Power Electronics
    • /
    • v.5 no.1
    • /
    • pp.67-75
    • /
    • 2005
  • A high efficiency ZVS PWM asymmetrical half bridge converter for a plasma display panel (PDP) sustaining power modules is proposed in this paper. To achieve the ZVS of power switches for the wide load range, a small additional inductor L/sub 1kg/, which also acts as an output filter inductor, is serially inserted into the transformer's primary side. At that point, to solve the problem of ringing in the secondary rectifier caused by L/sub 1kg/, the proposed circuit employs a structure without the output filter inductor, which helps the voltages across rectifier diodes to be clamped at the output voltage. Therefore, no dissipative RC (resistor capacitor) snubber for rectifier diodes is needed and a high efficiency as well as low noise output voltage can be realized. In addition, since it has no large output inductor filter, the asymmetrical half bridge converter features a simpler structure, lower cost, less mass, and lighter weight. In addition, since all energy stored in L/sub 1kg/ is transferred to the output side, the circulating energy problem can be effectively solved. The operational principle, theoretical analysis, and design considerations are presented. To confirm the operation, validity, and features of the proposed circuit, experimental results from a 425W, 385Vdc/170Vdc prototype are presented.

Low-cost Single-Phase Half-bridge Active Power Filter with One Current Sensor (단일 전류센서를 갖는 저가의 단상 반브릿지 능동전력필터)

  • 김희중;한병문;박용식
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.4
    • /
    • pp.342-348
    • /
    • 1999
  • This paper describes a low-cost single-phase active power filter, which consists of a half-bridge P\A미1 inverter with a s simple control circuit. In order to verify the performance of proposed active power filter, many computer simulations w with EMTP codes and experimental works with a hardware prototype were done. Both results confirm that the p proposed active power filter shows excellent performance to eliminate the harmonics generated in the single-phase non l linear‘ load. The active power filter has advantage of low implementation cost and compact size. using a half-bridge i inverter and a simple control circuit with only one current sensor. So. it can be fabricated as a plug-in type.

  • PDF

Modeling and Analysis of Zero Voltage Switching PWM Half Bridge DC/DC Converter (영전압 스위칭 PWM 하프 브릿지 컨버터의 모델링 및 분석)

  • 강정일;정영석;노정욱;윤명중
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.101-110
    • /
    • 1997
  • The circuit effects due to the transformer primary side series equivalent inductance in the Zero Voltage Switching Pulse Width Modulated Half Bridge DC/DC Converter and its impact on the effective duty are analyzed. The steady state equations and the small signal model of the converter are derived incorporating the effects of the complementary control and the utilization of transformer primary side series equivalent inductance. The open plant dynamics are analyzed on the basis of the model derived. The model predictions are confirmed by experimental measurements.

  • PDF

Development of Electronic Ballast for Automotive HID lamp using Holt Bridge Inverter (Half Bridge 구조를 이용한 자동차 헤드라이트용 전자식 안정기 개발)

  • 조계현;박종연;박재일
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.2
    • /
    • pp.10-16
    • /
    • 2003
  • An electronic ballast for driving automotive HID lamps is presented. The circuit topology is composed of a fly back converter, a half bridge inverter, and igniter using voltage doubler. A prototype was developed and tested on a 35W lamp with a 12V input voltage. To avoiding acoustic resonance the half bridge inverter is operated at 400Hz and provided a squared-wave voltage source to the lamp. The transient and steady state characteristics of the tested HID lapm are measured and analyzed.

DC Voltage Balancing Control of Half-Bridge PWM Inverter for Liniear Compressor of Refrigerator (냉장고의 선형압축기 구동을 위한 단상 하프브리지 인버터 시스템에서 직류단 불평형 보상에 관한 연구)

  • Kim, Ho-Jin;Kim, Hyeong-Jin;Kim, Dong-Youn;Kim, Jang-Mok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.3
    • /
    • pp.256-262
    • /
    • 2017
  • This paper presents the control algorithm of a single-phase AC/DC/AC PWM converter for the linear compressor of a refrigerator. The AC/DC/AC converter consists of a full-bridge PWM converter for the control of the input power factor and a half-bridge PWM inverter for the control of the single-phase linear compressor. At the DC-link of this topology, two capacitors are connected in series. These DC-link voltages must be balanced for safe operation. Thus, a new control method of DC voltage balancing for the half-bridge PWM inverter is proposed. The balancing algorithm uses the Integral-Proportional controller and inserts the DC-offset current at the Proportional-Resonant current controller of the inverter to solve the DC-link unbalanced voltages between the two capacitors. The proposed algorithm can be easily implemented without much computation and additional hardware circuit. The usefulness of the proposed algorithm is verified through several experiments.