• Title/Summary/Keyword: hadoop

Search Result 397, Processing Time 0.021 seconds

RDP: A storage-tier-aware Robust Data Placement strategy for Hadoop in a Cloud-based Heterogeneous Environment

  • Muhammad Faseeh Qureshi, Nawab;Shin, Dong Ryeol
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4063-4086
    • /
    • 2016
  • Cloud computing is a robust technology, which facilitate to resolve many parallel distributed computing issues in the modern Big Data environment. Hadoop is an ecosystem, which process large data-sets in distributed computing environment. The HDFS is a filesystem of Hadoop, which process data blocks to the cluster nodes. The data block placement has become a bottleneck to overall performance in a Hadoop cluster. The current placement policy assumes that, all Datanodes have equal computing capacity to process data blocks. This computing capacity includes availability of same storage media and same processing performances of a node. As a result, Hadoop cluster performance gets effected with unbalanced workloads, inefficient storage-tier, network traffic congestion and HDFS integrity issues. This paper proposes a storage-tier-aware Robust Data Placement (RDP) scheme, which systematically resolves unbalanced workloads, reduces network congestion to an optimal state, utilizes storage-tier in a useful manner and minimizes the HDFS integrity issues. The experimental results show that the proposed approach reduced unbalanced workload issue to 72%. Moreover, the presented approach resolve storage-tier compatibility problem to 81% by predicting storage for block jobs and improved overall data block placement by 78% through pre-calculated computing capacity allocations and execution of map files over respective Namenode and Datanodes.

Delayed Block Replication Scheme of Hadoop Distributed File System for Flexible Management of Distributed Nodes (하둡 분산 파일시스템에서의 유연한 노드 관리를 위한 지연된 블록 복제 기법)

  • Ryu, Woo-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.2
    • /
    • pp.367-374
    • /
    • 2017
  • This paper discusses management problems of Hadoop distributed node, which is a platform for big data processing, and proposes a novel technique for enabling flexible node management of Hadoop Distributed File System. Hadoop cannot configure Hadoop cluster dynamically because it judges temporarily unavailable nodes as a failure. Delayed block replication scheme proposed in this paper delays the removal of unavailable node as much as possible so as to be easily rejoined. Experimental results show that the proposed scheme increases flexibility of node management with little impact on distributed processing performance when the cluster size changes.

Research on Big Data Integration Method

  • Kim, Jee-Hyun;Cho, Young-Im
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.1
    • /
    • pp.49-56
    • /
    • 2017
  • In this paper we propose the approach for big data integration so as to analyze, visualize and predict the future of the trend of the market, and that is to get the integration data model using the R language which is the future of the statistics and the Hadoop which is a parallel processing for the data. As four approaching methods using R and Hadoop, ff package in R, R and Streaming as Hadoop utility, and Rhipe and RHadoop as R and Hadoop interface packages are used, and the strength and weakness of four methods are described and analyzed, so Rhipe and RHadoop are proposed as a complete set of data integration model. The integration of R, which is popular for processing statistical algorithm and Hadoop contains Distributed File System and resource management platform and can implement the MapReduce programming model gives us a new environment where in R code can be written and deployed in Hadoop without any data movement. This model allows us to predictive analysis with high performance and deep understand over the big data.

Sim-Hadoop : Leveraging Hadoop Distributed File System and Parallel I/O for Reliable and Efficient N-body Simulations (Sim-Hadoop : 신뢰성 있고 효율적인 N-body 시뮬레이션을 위한 Hadoop 분산 파일 시스템과 병렬 I / O)

  • Awan, Ammar Ahmad;Lee, Sungyoung;Chung, Tae Choong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.05a
    • /
    • pp.476-477
    • /
    • 2013
  • Gadget-2 is a scientific simulation code has been used for many different types of simulations like, Colliding Galaxies, Cluster Formation and the popular Millennium Simulation. The code is parallelized with Message Passing Interface (MPI) and is written in C language. There is also a Java adaptation of the original code written using MPJ Express called Java Gadget. Java Gadget writes a lot of checkpoint data which may or may not use the HDF-5 file format. Since, HDF-5 is MPI-IO compliant, we can use our MPJ-IO library to perform parallel reading and writing of the checkpoint files and improve I/O performance. Additionally, to add reliability to the code execution, we propose the usage of Hadoop Distributed File System (HDFS) for writing the intermediate (checkpoint files) and final data (output files). The current code writes and reads the input, output and checkpoint files sequentially which can easily become bottleneck for large scale simulations. In this paper, we propose Sim-Hadoop, a framework to leverage HDFS and MPJ-IO for improving the I/O performance of Java Gadget code.

Big data platform for health monitoring systems of multiple bridges

  • Wang, Manya;Ding, Youliang;Wan, Chunfeng;Zhao, Hanwei
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.4
    • /
    • pp.345-365
    • /
    • 2020
  • At present, many machine leaning and data mining methods are used for analyzing and predicting structural response characteristics. However, the platform that combines big data analysis methods with online and offline analysis modules has not been used in actual projects. This work is dedicated to developing a multifunctional Hadoop-Spark big data platform for bridges to monitor and evaluate the serviceability based on structural health monitoring system. It realizes rapid processing, analysis and storage of collected health monitoring data. The platform contains offline computing and online analysis modules, using Hadoop-Spark environment. Hadoop provides the overall framework and storage subsystem for big data platform, while Spark is used for online computing. Finally, the big data Hadoop-Spark platform computational performance is verified through several actual analysis tasks. Experiments show the Hadoop-Spark big data platform has good fault tolerance, scalability and online analysis performance. It can meet the daily analysis requirements of 5s/time for one bridge and 40s/time for 100 bridges.

A Novel Node Management in Hadoop Cluster by using DNA

  • Balaraju. J;PVRD. Prasada Rao
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.9
    • /
    • pp.134-140
    • /
    • 2023
  • The distributed system is playing a vital role in storing and processing big data and data generation is speedily increasing from various sources every second. Hadoop has a scalable, and efficient distributed system supporting commodity hardware by combining different networks in the topographical locality. Node support in the Hadoop cluster is rapidly increasing in different versions which are facing difficulty to manage clusters. Hadoop does not provide Node management, adding and deletion node futures. Node identification in a cluster completely depends on DHCP servers which managing IP addresses, hostname based on the physical address (MAC) address of each Node. There is a scope to the hacker to theft the data using IP or Hostname and creating a disturbance in a distributed system by adding a malicious node, assigning duplicate IP. This paper proposing novel node management for the distributed system using DNA hiding and generating a unique key using a unique physical address (MAC) of each node and hostname. The proposed mechanism is providing better node management for the Hadoop cluster providing adding and deletion node mechanism by using limited computations and providing better node security from hackers. The main target of this paper is to propose an algorithm to implement Node information hiding in DNA sequences to increase and provide security to the node from hackers.

Spatial Big Data Query Processing System Supporting SQL-based Query Language in Hadoop (Hadoop에서 SQL 기반 질의언어를 지원하는 공간 빅데이터 질의처리 시스템)

  • Joo, In-Hak
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • In this paper we present a spatial big data query processing system that can store spatial data in Hadoop and query the data with SQL-based query language. The system stores large-scale spatial data in HDFS-based storage system, and supports spatial queries expressed in SQL-based query language extended for spatial data processing. It supports standard spatial data types and functions defined in OGC simple feature model in the query language. This paper presents the development of core functions of the system including query language parsing, query validation, query planning, and connection with storage system. We compares the performance of the suggested system with an existing system, and our experiments show that the system shows about 58% performance improvement of query execution time over the existing system when executing region query for spatial data stored in Hadoop.

A Benchmark Test of Spatial Big Data Processing Tools and a MapReduce Application

  • Nguyen, Minh Hieu;Ju, Sungha;Ma, Jong Won;Heo, Joon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.5
    • /
    • pp.405-414
    • /
    • 2017
  • Spatial data processing often poses challenges due to the unique characteristics of spatial data and this becomes more complex in spatial big data processing. Some tools have been developed and provided to users; however, they are not common for a regular user. This paper presents a benchmark test between two notable tools of spatial big data processing: GIS Tools for Hadoop and SpatialHadoop. At the same time, a MapReduce application is introduced to be used as a baseline to evaluate the effectiveness of two tools and to derive the impact of number of maps/reduces on the performance. By using these tools and New York taxi trajectory data, we perform a spatial data processing related to filtering the drop-off locations within Manhattan area. Thereby, the performance of these tools is observed with respect to increasing of data size and changing number of worker nodes. The results of this study are as follows 1) GIS Tools for Hadoop automatically creates a Quadtree index in each spatial processing. Therefore, the performance is improved significantly. However, users should be familiar with Java to handle this tool conveniently. 2) SpatialHadoop does not automatically create a spatial index for the data. As a result, its performance is much lower than GIS Tool for Hadoop on a same spatial processing. However, SpatialHadoop achieved the best result in terms of performing a range query. 3) The performance of our MapReduce application has increased four times after changing the number of reduces from 1 to 12.

A Performance Analysis Based on Hadoop Application's Characteristics in Cloud Computing (클라우드 컴퓨팅에서 Hadoop 애플리케이션 특성에 따른 성능 분석)

  • Keum, Tae-Hoon;Lee, Won-Joo;Jeon, Chang-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.5
    • /
    • pp.49-56
    • /
    • 2010
  • In this paper, we implement a Hadoop based cluster for cloud computing and evaluate the performance of this cluster based on application characteristics by executing RandomTextWriter, WordCount, and PI applications. A RandomTextWriter creates given amount of random words and stores them in the HDFS(Hadoop Distributed File System). A WordCount reads an input file and determines the frequency of a given word per block unit. PI application induces PI value using the Monte Carlo law. During simulation, we investigate the effect of data block size and the number of replications on the execution time of applications. Through simulation, we have confirmed that the execution time of RandomTextWriter was proportional to the number of replications. However, the execution time of WordCount and PI were not affected by the number of replications. Moreover, the execution time of WordCount was optimum when the block size was 64~256MB. Therefore, these results show that the performance of cloud computing system can be enhanced by using a scheduling scheme that considers application's characteristics.

A Study on the Effect of the Name Node and Data Node on the Big Data Processing Performance in a Hadoop Cluster (Hadoop 클러스터에서 네임 노드와 데이터 노드가 빅 데이터처리 성능에 미치는 영향에 관한 연구)

  • Lee, Younghun;Kim, Yongil
    • Smart Media Journal
    • /
    • v.6 no.3
    • /
    • pp.68-74
    • /
    • 2017
  • Big data processing processes various types of data such as files, images, and video to solve problems and provide insightful useful information. Currently, various platforms are used for big data processing, but many organizations and enterprises are using Hadoop for big data processing due to the simplicity, productivity, scalability, and fault tolerance of Hadoop. In addition, Hadoop can build clusters on various hardware platforms and handle big data by dividing into a name node (master) and a data node (slave). In this paper, we use a fully distributed mode used by actual institutions and companies as an operation mode. We have constructed a Hadoop cluster using a low-power and low-cost single board for smooth experiment. The performance analysis of Name node is compared through the same data processing using single board and laptop as name nodes. Analysis of influence by number of data nodes increases the number of data nodes by two times from the number of existing clusters. The effect of the above experiment was analyzed.