• Title/Summary/Keyword: habitat suitability index

Search Result 105, Processing Time 0.022 seconds

Predicting Potential Habitat for Hanabusaya Asiatica in the North and South Korean Border Region Using MaxEnt (MaxEnt 모형 분석을 통한 남북한 접경지역의 금강초롱꽃 자생가능지 예측)

  • Sung, Chan Yong;Shin, Hyun-Tak;Choi, Song-Hyun;Song, Hong-Seon
    • Korean Journal of Environment and Ecology
    • /
    • v.32 no.5
    • /
    • pp.469-477
    • /
    • 2018
  • Hanabusaya asiatica is an endemic species whose distribution is limited in the mid-eastern part of the Korean peninsula. Due to its narrow range and small population, it is necessary to protect its habitats by identifying it as Key Biodiversity Areas (KBAs) adopted by the International Union for Conservation of Nature (IUCN). In this paper, we estimated potential natural habitats for H. asiatica using maximum entropy model (MaxEnt) and identified candidate sites for KBA based on the model results. MaxEnt is a machine learning algorithm that can predict habitats for species of interest unbiasedly with presence-only data. This property is particularly useful for the study area where data collection via a field survey is unavailable. We trained MaxEnt using 38 locations of H. asiatica and 11 environmental variables that measured climate, topography, and vegetation status of the study area which encompassed all locations of the border region between South and North Korea. Results showed that the potential habitats where the occurrence probabilities of H. asiatica exceeded 0.5 were $778km^2$, and the KBA candidate area identified by taking into account existing protected areas was $1,321km^2$. Of 11 environmental variables, elevation, annual average precipitation, average precipitation in growing seasons, and the average temperature in the coldest month had impacts on habitat selection, indicating that H. asiatica prefers cool regions at a relatively high elevation. These results can be used not only for identifying KBAs but also for the reference to a protection plan for H. asiatica in preparation of Korean reunification and climate change.

Development of a Distribution Prediction Model by Evaluating Environmental Suitability of the Aconitum austrokoreense Koidz. Habitat (세뿔투구꽃의 서식지 환경 적합성 평가를 통한 분포 예측 모형 개발)

  • Cho, Seon-Hee;Lee, Kye-Han
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.4
    • /
    • pp.504-515
    • /
    • 2021
  • To examine the relationship between environmental factors influencing the habitat of Aconitum austrokoreense Koidz., this study employed the MexEnt model to evaluate 21 environmental factors. Fourteen environmental factors having an AUC of at least 0.6 were found to be the age of stand, growing stock, altitude, topography, topographic wetness index, solar radiation, soil texture, mean temperature in January, mean temperature in April, mean annual temperature, mean rainfall in January, mean rainfall in August, and mean annual rainfall. Based on the response curves of the 14 descriptive factors, Aconitum austrokoreense Koidz. on the Baekun Mountain were deemed more suitable for sites at an altitude of 600 m or lower, and habitats were not significantly affected by the inclination angle. The preferred conditions were high stand density, sites close to valleys, and distribution in the northwestern direction. Under the five-age class system, the species were more likely to be observed for lower classes. The preferred solar radiation in this study was 1.2 MJ/m2. The species were less likely to be observed when the topographic wetness index fell below the reference value of 4.5, and were more likely observed above 7.5 (reference of threshold). Soil analysis showed that Aconitum austrokoreense Koidz. was more likely to thrive in sandy loam than clay. Suitable conditions were a mean January temperature of - 4.4℃ to -2.5℃, mean April temperature of 8.8℃-10.0℃, and mean annual temperature of 9.6℃-11.0℃. Aconitum austrokoreense Koidz. was first observed in sites with a mean annual rainfall of 1,670- 1,720 mm, and a mean August rainfall of at least 350 mm. Therefore, sites with increasing rainfall of up to 390 mm were preferred. The area of potential habitats having distributive significance of 75% or higher was 202 ha, or 1.8% of the area covered in this study.

International and domestic research trends in longitudinal connectivity evaluations of aquatic ecosystems, and the applicability analysis of fish-based models (수생태계 종적 연결성 평가를 위한 국내외 연구 현황 및 어류기반 종적 연속성 평가모델 적용성 분석)

  • Kim, Ji Yoon;Kim, Jai-Gu;Bae, Dae-Yeul;Kim, Hye-Jin;Kim, Jeong-Eun;Lee, Ho-Seong;Lim, Jun-Young;An, Kwang-Guk
    • Korean Journal of Environmental Biology
    • /
    • v.38 no.4
    • /
    • pp.634-649
    • /
    • 2020
  • Recently, stream longitudinal connectivity has been a topic of investigation due to the frequent disconnections and the impact of aquatic ecosystems caused by the construction of small and medium-sized weirs and various artificial structures (fishways) directly influencing the stream ecosystem health. In this study, the international and domestic research trends of the longitudinal connectivity in aquatic ecosystems were evaluated and the applicability of fish-based longitudinal connectivity models used in developed countries was analyzed. For these purposes, we analyzed the current status of research on longitudinal connectivity and structural problems, fish monitoring methodology, monitoring approaches, longitudinal disconnectivity of fish movement, and biodiversity. In addition, we analyzed the current status and some technical limitations of physical habitat suitability evaluation, ecology-based water flow, eco-hydrological modeling for fish habitat connectivity, and the s/w program development for agent-based model. Numerous references, data, and various reports were examined to identify worldwide longitudinal stream connectivity evaluation models in European and non-European countries. The international approaches to longitudinal connectivity evaluations were categorized into five phases including 1) an approach integrating fish community and artificial structure surveys (two types input variables), 2) field monitoring approaches, 3) a stream geomorphological approach, 4) an artificial structure-based DB analytical approach, and 5) other approaches. the overall evaluation of survey methodologies and applicability for longitudinal stream connectivity suggested that the ICE model (Information sur la Continuite Ecologique) and the ICF model (Index de Connectivitat Fluvial), widely used in European countries, were appropriate for the application of longitudinal connectivity evaluations in Korean streams.

Selecting the Optimal Research Time for Forest Birds Census in Each Season (산새류의 계절별 적정 조사시간 선정 연구)

  • Kim, Mi-Jeong;Lee, Soo-Dong;Kim, Ji-Suk
    • Korean Journal of Environment and Ecology
    • /
    • v.27 no.2
    • /
    • pp.219-229
    • /
    • 2013
  • This research is performed in order to suggest seasonal effective research time that is applied to wild birds research which lives in a forest. The subject area of this research is Mulgun-ri village forest in Samdong-Myeon, Namhe-gun. To investigate suitability of the project, existing land-use, existing vegetation, vegetational structure, and etc. of the subject and whole area are figured out. To suggest adequate research time, based on seasonal sun rise and set time for 3days, repetitive research is performed at hourly intervals. The subject area is connected with a forest and is possible for forest wild birds to flows in and provides various habitats and feeding areas. And also the subject area is a appropriate area for wild birds research and is like a natural forest in that a layer structure development of the forest itself, a distribution of Zelkova serrata and Aphananthe aspera and so on. 105 species which is observed in subject area are categorized and mountain birds are classified. After time-based peak value is selected in each season, hourly species richness, diversity, and index of similarity are analyzed as compared with the appearing number of species and individual bird. As a result, 7~11 hour is the most effective time in spring, and 8~9 hour is the best time. In summer, 6~9 hour is the most appropriate time when whole appearing species are similar to species structure. In fall, 7~11(30~60 minutes after sun rise) when wild birds movements are vigorous is analyzed easy to observe and 8~9 hour is the most appropriate research time because each analysis shows the best values. In winter, 7~12 hour is the most effective time although 10~11 hour is the best time but it is decided that similar results are drawn because hourly deviation is not so big except 1 hour before sun rise. In every four season, it is decided that 30~60 minutes after sun rise is appropriate to research a group of wild birds in the subject area.

Evaluation of applicability of linkage modeling using PHABSIM and SWAT (PHABSIM과 SWAT을 이용한 연계모델링 적용성 평가)

  • Kim, Yongwon;Byeon, Sangdon;Park, Jinseok;Woo, Soyoung;Kim, Seongjoon
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.10
    • /
    • pp.819-833
    • /
    • 2021
  • This study is to evaluate applicability of linkage modeling using PHABSIM (Physical Habitat Simulation System) and SWAT (Soil and Water Assessment Tool) and to estimate ecological flow for target fishes of Andong downstream (4,565.7 km2). The SWAT was established considering 2 multi purpose dam (ADD, IHD) and 1 streamflow gauging station (GD). The SWAT was calibrated and validated with 9 years (2012 ~ 2020) data of 1 stream (GD) and 2 multi-purpose dam (ADD, IHD). For streamflow and dam inflows (GD, ADD and IHD), R2, NSE and RMSE were 0.52 ~ 0.74, 0.48 ~ 0.71, and 0.92 ~ 2.51 mm/day respectively. As a result of flow duration analysis for 9 years (2012 ~ 2020) using calibrated streamflow, the average Q185 and Q275 were 36.5 m3/sec (-1.4%) and 23.8 m3/sec (0%) respectively compared with the observed flow duration and were applied to flow boundary condition of PHABSIM. The target stream was selected as the 410 m section where GD is located, and stream cross-section and hydraulic factors were constructed based on Nakdong River Basic Plan Report and HEC-RAS. The dominant species of the target stream was Zacco platypus and the sub-dominant species was Puntungia herzi Herzenstein, and the HSI (Habitat Suitability Index) of target species was collected through references research. As the result of PHABSIM water level and velocity simulation, error of Q185 and Q275 were analyzed -0.12 m, +0.00 m and +0.06 m/s, +0.09 m/s respectively. The average WUA (Weighted Usable Area) and ecological flow of Zacco platypus and Puntungia herzi Herzenstein were evaluated 76,817.0 m2/1000m, 20.0 m3/sec and 46,628.6 m2/1000m, 9.0 m3/sec. This results indicated Zacco platypus is more adaptable to target stream than Puntungia herzi Herzenstein.