• Title/Summary/Keyword: hGM -CSF

Search Result 84, Processing Time 0.023 seconds

Immune-triggering effect of the foodborne parasite Kudoa septempunctata through the C-type lectin Mincle in HT29 cells

  • Shin, Ji-Hun;Yang, Jung-Pyo;Seo, Seung-Hwan;Kim, Sang-Gyun;Kim, Eun-Min;Ham, Do-Won;Shin, Eun-Hee
    • BMB Reports
    • /
    • v.53 no.9
    • /
    • pp.478-483
    • /
    • 2020
  • Kudoa septempunctata is a myxozoan parasite that causes food poisoning in individuals consuming olive flounder. The present study aimed to investigate the currently insufficiently elucidated early molecular mechanisms of inflammatory responses in the intestine owing to parasite ingestion. After Kudoa spores were isolated from olive flounder, HT29 cells were exposed to spores identified to be alive using SYTO-9 and propidium iodide staining or to antigens of Kudoa spores (KsAg). IL-1β, IL-8, TNF-α and NFKB1 expression and NF-κB activation were assessed using real-time PCR, cytokine array and western blotting. The immunofluorescence of FITC-conjugated lectins, results of ligand binding assays using Mincle-Fc and IgG-Fc, CLEC4E expressions in response to KsAg stimulation, and Mincle-dependent NF-κB activation were assessed to clarify the early immune-triggering mechanism. Inflammatory cytokines (IL-1β, GM-CSF and TNF-α), chemokines (IL-8, CCL2, CCL5 and CXCL1) and NF-κB activation (pNF-κB/NF-κB) in HT29 cells increased following stimulation by KsAg. The immunofluorescence results of spores and lectins (concanavalin A and wheat germ agglutinin) suggested the importance of Mincle in molecular recognition between Kudoa spores and intestinal cells. Practically, data for Mincle-Fc and KsAg binding affinity, CLEC4E mRNA expression, Mincle immunofluorescence staining and hMincle-dependent NF-κB activation demonstrated the involvement of Mincle in the early immune-triggering mechanism. The present study newly elucidated that the molecular recognition and immune-triggering mechanism of K. septempunctata are associated with Mincle on human intestinal epithelial cells.

Effect of Dendritic Cell Based Cancer Vaccine Using Allogeneic Tumor Cell Lysate in Melanoma Pulmonary Metastasis Model (동종 종양 세포 용해액을 이용한 수지상 세포 항암 백신의 흑색종 폐암 전이 모델에서의 효과 연구)

  • Lee, Young-Joon;Kim, Myung-Joo;In, So-Hee;Choi, Ok-Mi;Baek, So-Young;Kwon, Young-Do;Lee, Hyun-Ah
    • IMMUNE NETWORK
    • /
    • v.5 no.3
    • /
    • pp.163-171
    • /
    • 2005
  • Background: To perform the successful dendritic cell-based cancer immunotherapy one of the main issues to be solved is the source of antigen for DC pulsing. Limitations occur by using auto-tumor lysate due to the difficulties obtaining enough tumor tissue(s) quantitatively as well as qualitatively. In this study the possibility of allogeneic tumor cell lysate as a DC pulsing antigen has been tested in mouse melanoma pulmonary me tastasis model. Methods: B16F10 melanoma cells $(1{\timeS}10^5/mouse)$ were inoculated intra venously into the C57BL/6 mouse. Therapeutic DCs were cultured from the bone marrow myeloid lineage cells with GM-CSF and IL-4 (1,000 U/ml each) for 7 days and pulsed with lysate of either autologous B16F10 (B-DC), allogeneic K1735 (C3H/He origin; K-DC) or CloneM3 (DBA2 origin; C-DC) melanoma cells for 18 hrs. Pulsed-DCs $(1{\times}10^6/mouse)_{[CGP1]}$ were injected i.p. twice with one week interval starting from the day 1 after tumor cell inoculation. Results: Without observable toxicity, allogeneic tumor cell lysate pulsed-DC induced the significantly better anti-tumor response (tumor scale: $2.7{\pm}0.3,\;0.7{\pm}0.3\;and\;0.3{\pm}0.2$ for saline, B-DC and C-DC treated group, respectively). Along with increased tumor specific lymphocyte proliferations, induction of IFN-${\gamma}$ secretion against both auto- and allo-tumor cell lysates was observed from the DC treated mice. (w/B16F10-lysate: $44.97{\pm}10.31,\;1787.94{\pm}131.18,\;1257.15{\pm}48.27$, w/CloneM3 lysate: 0, $1591.13{\pm}1.83,\;1460.47{\pm}86.05pg/ml$ for saline, B-DC and C-DC treated group, respectively) Natural killer cell activity was also increased in the mice treated with tumor cell lysate pulsed-DC ($8.9{\pm}_{[CGP2]}0.1,\;11.6{\pm}0.8\;and\;12.6{\pm}0.7%$ specific NK activity for saline, B-DC and C-DC treated group, respectively). Conclusion: Conclusively, promising data were obtained that allogeneic-tumor cell lysate can be used as a tumor antigen for DC-based cancer immunotherapy.

The Effect of Gefitinib on Immune Response of Human Peripheral Blood Monocyte-Derived Dendritic Cells (인간 말초혈액 단핵구 유래 수지상세포의 면역반응에 미치는 Gefitinib의 영향)

  • Cho, Jin-Hoon;Kim, Mi-Hyun;Lee, Kwang-Ha;Kim, Ki-Uk;Jeon, Doo-Soo;Park, Hye-Kyung;Kim, Yun-Seong;Lee, Min-Ki;Park, Soon-Kew
    • Tuberculosis and Respiratory Diseases
    • /
    • v.69 no.6
    • /
    • pp.456-464
    • /
    • 2010
  • Background: Synergistic antitumor effects of the combined chemoimmunotherapy based on dendritic cells have been reported recently. The aim of this study is to search new applicability of gefitinib into the combination treatment through the confirmation of gefitinib effects on the monocyte derived dendritic cells (moDCs); most potent antigen presenting cell (APC). Methods: Immature and mature monocyte-derived dendritic cell (im, mMoDC)s were generated from peripheral blood monocyte (PBMC) in Opti-MEM culture medium supplemented with IL-4, GM-CSF and cocktail, consisting of TNF-${\alpha}$ (10 ng/mL), IL-$1{\beta}$ (10 ng/mL), IL-6 (1,000 U/mL) and $PGE_2$ ($1{\mu}/mL$). Various concentrations of gefitinib also added on day 6 to see the influence on immature and mature MoDCs. Immunophenotyping of DCs under the gefitinib was performed by using monoclonal antibodies (CD14, CD80, CD83, CD86, HLA-ABC, HLA-DR). Supernatant IL-12 production and apoptosis of DCs was evaluated. And MLR assay with $[^3H]$-thymidine uptake assay was done. Results: Expression of CD83, MHC I were decreased in mMoDCs and MHC I was decreased in imMoDCs under gefitinib. IL-12 production from mMoDCs was decreased under $10{\mu}M$ of gefitinib sinificantly. Differences of T cell proliferation capacity were not observed in each concentration of geftinib. Conclusion: In spite of decreased expressions of some dendritic cell surface molecules and IL-12 production under $10{\mu}M$ of gefitinib, significant negative influences of gefitinib in antigen presenting capacity and T cell stimulation were not observed.

Change of Dendritic Cell Subsets Involved in Protection Against Listeria monocytogenes Infection in Short-Term-Fasted Mice

  • Young-Jun Ju;Kyung-Min Lee;Girak Kim;Yoon-Chul Kye;Han Wool Kim;Hyuk Chu;Byung-Chul Park;Jae-Ho Cho;Pahn-Shick Chang;Seung Hyun Han;Cheol-Heui Yun
    • IMMUNE NETWORK
    • /
    • v.22 no.2
    • /
    • pp.16.1-16.20
    • /
    • 2022
  • The gastrointestinal tract is the first organ directly affected by fasting. However, little is known about how fasting influences the intestinal immune system. Intestinal dendritic cells (DCs) capture antigens, migrate to secondary lymphoid organs, and provoke adaptive immune responses. We evaluated the changes of intestinal DCs in mice with short-term fasting and their effects on protective immunity against Listeria monocytogenes (LM). Fasting induced an increased number of CD103+CD11b- DCs in both small intestinal lamina propria (SILP) and mesenteric lymph nodes (mLN). The SILP CD103+CD11b- DCs showed proliferation and migration, coincident with increased levels of GM-CSF and C-C chemokine receptor type 7, respectively. At 24 h post-infection with LM, there was a significant reduction in the bacterial burden in the spleen, liver, and mLN of the short-term-fasted mice compared to those fed ad libitum. Also, short-term-fasted mice showed increased survival after LM infection compared with ad libitum-fed mice. It could be that significantly high TGF-β2 and Aldh1a2 expression in CD103+CD11b- DCs in mice infected with LM might affect to increase of Foxp3+ regulatory T cells. Changes of major subset of DCs from CD103+ to CD103- may induce the increase of IFN-γ-producing cells with forming Th1-biased environment. Therefore, the short-term fasting affects protection against LM infection by changing major subset of intestinal DCs from tolerogenic to Th1 immunogenic.