• Title/Summary/Keyword: hER$\alpha$ LBD

Search Result 2, Processing Time 0.014 seconds

Characteristics of New Estrogen Biosensor Employing Taste Principles

  • Kwon, Soon-Bae;Lee, Cil-Han;Kim, Kyung-Nyun
    • International Journal of Oral Biology
    • /
    • v.36 no.2
    • /
    • pp.103-108
    • /
    • 2011
  • Measurement of estrogen concentration in bio-samples are very important for differential diagnosis of various disease or evaluation of health status. However, it is difficult to collect immediate data of estrogen concentration because they are measured by radioimmunoassay or chromatography which need time- and cost-consuming sample pre-treatment. This study was performed for development of new estrogen biosensor employing taste principles, and for evaluation of cross reactivity between various steroid hormones. Gene sequence of ligand binding domain of ${\alpha}$-human estrogen receptor (amino acid 302-553; hER-LBD) was cloned from human breast cancer cell line. The proteins of hER-LBD were produced by T7-E.coli expression system, and isolated by chromatography. hER-LBD were coated on the gold plated quartz crystal (AT-cut 9MHz), and resonance frequencies were measured by universal frequency counter. Estradiol, progesterone, testosterone, and aldosterone were used for cross reactivity of the hER-LBD. We also monitored influences of pH change in resonance frequency. The resonance frequencies of hER-LBD coated quartz crystal were decreased during increase of estrogen concentration from $15 \;{\mu}g/mL$ to $50\;{\mu}g/mL$. However, similar steroid hormones, progesterone and aldosterone, did not elicit the change in resonance frequency. Testosterone evoke weak change in resonance frequency. The new estrogen biosensor was more sensitive in pH 7.2 than in pH 7.6. These results suggest that hER-LBD coated quartz crystal biosensor is a probable estrogen biosensor.

Construction of the Detection System of Endocrine Disrupters using Yeast Two-Hybrid System with Human Estrogen Receptor ligand Binding Domain and Co-activators (Human Estrogen Receptor Ligand Binding Domain (hER LBD)과 Co-activator로 구성된 효모 Two-Hybrid System을 이용한 내분비계장애물질 검출계의 구축)

  • 이행석;조은민;류재천
    • Environmental Mutagens and Carcinogens
    • /
    • v.22 no.3
    • /
    • pp.175-182
    • /
    • 2002
  • Endocrine disruptors (EDs) are the chemicals that affect endocrine systems through activation or inhibition of steroid hormone response. It is necessary to have a good system to evaluate rapidly and accurately endocrine-disrupting activities of suspected chemicals and their degradation products. The key targets of EDs are nuclear hormone receptors, which bind to steroid hormones and regulate their gene transcription. We constructed a co-expression system of Gal4p DNA binding domain (DBD)- ligand binding domain of human estrogen receptor $\alpha$ or $\beta$, and Gal4p transactivation domain (TAD)-co-activator AIB-1, SRC-1 or TIF-2 in Saccharomyces cerevisiae with a chromosome-integrated lacZ reporter gene under the control of CYC1 promoter and Gal4p binding site (GAL4 upstream activating sequence, GAL4$_{UAS}$). Expression of this reporter gene was dependent on the presence of estrogen or EDs in the culture medium. We found that the two-hybrid system with combination of the hER$\beta$ LBD and co-activator SRC-1 was most effective in the xenoestrogen-dependent induction of reporter activity. The extent of transcriptional activation by those chemicals correlated with their estrogenic activities measured by other assay systems, indicating that this assay system is efficient and reliable for measuring estrogenic activity. The data in this research demonstrated that the yeast detection system using steroid hormone receptor and co-activator is a useful tool for identifying chemicals that interact with steroid receptors.s.

  • PDF