• Title/Summary/Keyword: gyrocompass loop

Search Result 5, Processing Time 0.025 seconds

Development of the Real-time Initial Alignment Algorithm using the Kalman Filter

  • Oh, Sang-Heon;Hwang, Dong-Hwan;Lee, Sang-Jeong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.61.2-61
    • /
    • 2001
  • The purpose of the initial alignment of a SDINS is to get a coordinate transformation matrix from the body frame to the navigation frame. The initial alignment is one of the most important processes in the navigation system since its error has a large influence on the navigation solution. In this paper, a real-time initial alignment algorithm for the SDINS is developed using the Kalman filter. The steady state error analysis is performed for the developed Kalman filter technique and the gyrocompass loop method. The performance of the developed alignment method is compared with the gyrocompass loop method through the real-time alignment experiments.

  • PDF

A Stabilisation Scheme of a Stepping Motor for a Fiber Optic Gyrocompass System (광파이버 자이로콤파스 시스템을 위한 스텝핑모터의 안정화)

  • Kwon, Yong-Soo;Jung, Sam
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.152-154
    • /
    • 1997
  • This paper describes a study of a stabilisation scheme of a stepping motor in the driving systems of the Fiber Optic Gyrocompass absolutely required a constant speed and a precise position control with fine step angle. The new stabilisation scheme combining microstepping control and frequency modulation is developed which enables the experimental machine to be capable of stable running to a stepping frequency in the range 5 times the open-loop stall frequency.

  • PDF

Implementation of an Initial Alignment Algorithm for a Stapdown Inertial Navigation system (스트랩다운 관성항법시스템의 초기정렬 알고리즘 구현)

  • Kim, Jong-Hyuk;Moon, Sung-Wook;Lee, See-Ho;Kim, Se-Hwan;Hwang, Dong-Hwan;Lee, Sang-Jeong;Ra, Sung-Woong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.2
    • /
    • pp.138-145
    • /
    • 2000
  • In this paper an initial alignment algorithm for a strapdown inertial navigation system is implemented using a RISC CPU board. The algorithm computes roll pitch and yaw angles of the direction cosine matrix utilizing measured components of the specific force and earth rate when the navigation system is stationary. The coarse alignment algorithm is performed first and then the fine alignment algorithm containing a 3rd-order gyrocompass loop follows. The experimental set consists of an IMU a CPU board and a monitoring system Experimental results show that the implemented algorithm can be utilized in navigation systems.

  • PDF

Development of Dynamic Fiber Optic Gyrocompass (동적방식 광섬유자이로 콤파스의 제작)

  • Lee, Seok-Jeong;Choi, Woo-Jin;Bae, Jeong-Chul;Kim, Sung-Jin;Lee, Sang-Sik;Kwon, Yong-Soo;Hong, Tchang-Hee
    • Journal of the Korean Institute of Navigation
    • /
    • v.21 no.3
    • /
    • pp.67-74
    • /
    • 1997
  • This paper described the method and the result of making a dynamic fiber optic gyrocompass measuring the heading angles of ships by processing the output signal from a constant rotating fiber optic sensor and also showed the measurement to test the performance of our system. Considerig an economical view we designed and ordered a cheap medium grade fiber densors increased not fiber length but the diameter of a fiber sensing loop. The scale factor and noise was 267mV/deg/s and 2 deg/hr/$\sqrt{Hz}(1{\sigma})$, respectively. We made the dynamic fiber optic gyrocompass by this sensor. We measured the heading angles in an arbitrary direction to evaluate the accuracy of our system and the root mean square error was $0.4^\circ$. Moreover, we measured the angles ineach direction of $45^\circ$. successive rotation to know whether this system has distoritions in a specific direction or not and the root mean square error in this case was $0.5^\circ$.

  • PDF

A Study on the Prediction Method of Propulsive Energy Loss Related to Automatic Steering of Ships (자동조타로써 항행하는 선박의 추진 에너지 손실량 평가법에 관한 연구)

  • 손경호;이경우;황승욱;배정철
    • Journal of the Korean Institute of Navigation
    • /
    • v.19 no.3
    • /
    • pp.11-19
    • /
    • 1995
  • When an automatic course keeping is introduced, as is quite popular in modern navigation, the closed-loop control system consists of autopilot device, power unit, steering gear, ship dynamics, and magnetic or gyrocompass. We derive mathematical models of each element of the automatic steering system. We provide a method of theoretical analysis on the propulsive energy loss related to automatic steering of ships in the open seas, taking account of the on-off(non-linear) characteristics of power unit. Also we paid attention to non-linear element installed in autopilot device, which is normally called weather adjuster. Next we make numerical calculation of the effects of autopilot control constants on the propulsive energy loss for two kinds of ship, a fishing boat and an ore carrier. Realistic sea and wind disturbances are employed in the calculation.

  • PDF