• Title/Summary/Keyword: gypsum content

Search Result 110, Processing Time 0.025 seconds

Sulfate Attack and the Role of Cement Compositions

  • Lee, Seung-Tae;Lee, Seung-Heun
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.9
    • /
    • pp.465-470
    • /
    • 2007
  • This paper presents an experimental study of the sulfate resistance of mortars and pastes exposed to sodium sulfate solutions up to one year. In order to check deterioration modes due to sulfate attack, the sodium sulfate solution was varied at three concentration steps (3,380, 10,140 and 33,800 ppm of $SO_4^{2-}$ ions), and maintained at ambient temperature. The tests include a visual examination, expansion and compressive strength loss measurements as well as x-ray diffraction tests. The experimental data indicated that the use of cement with a low $C_3A$ content and low silicate ratio has a beneficial effect on the sulfate attack of mortars. In contrast, the mortars with a high $C_3A$ content and high silicate ratio became severely degraded due to the formation of ettringite, gypsum and/or thaumasite in the cement matrix.

The Effect of Delayed Compaction on Unconfined Compressive Strength of Soil-Cement Mixtures (지연다짐이 Soil-Cement의 압축강도에 미치는 영향)

  • 정일웅;김문기;도덕현
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.28 no.4
    • /
    • pp.66-76
    • /
    • 1986
  • This study was attempted to investigate the effects of delayed compaction on the unconfined compressive strengh and dry density of Soil-cement mixtures. Soil-cement construction is a time-consuming procedure. Time-delay is known as a detrimental factor to lower the quality of soil-cement layer. A laboratory test was performed using coarse and fine weathered granite soils. The soils were mixed with 7% cement at optimum moisture content and excess moisture content in part. Socondary additives such as lime, gypsum-plaster, flyash and sugar were tried to counteract the detri-mental effect of delayed compaction. The specimens were compacted by Harvard Miniature Compaction Apparatus at 0,1,2,4,6 hors after mixing. Two kinds of compactive efforts(9 kgf and 18 kgf tamper) were applied. The results were summarized as follows: 1.With the increase of time delay, the decrease rate of dry density of the specimen compacted by 9 kgf tamper was steeper than that of the specimen compacted by 18kgf tamper. In the same manner, soil-B had steeper decreasing rate of dry density than soil-A. 2.Based on the results of delayed compaction tests, the dry density and unconfined compressive sterngth were rapidly decreased in the early 2 hours delay, while those were slowly decreased during the time delay of 2 to 6 hours. 3.The dry density and unconfined compressive strength were increased by addition of 3% excess water to the optimum moisture content during the time delay of 2 to 6 hours. 4.Without time delay in compaction, the dry densities of soil-A were increased by adding secondary additives such as lime, gypsum-plaster, flyash and sugar, on the other hand, those of soil-B were decreased except for the case of sugar. 5.The use of secondary additives like lime, gypsum-plaster, flyash and sugar could reduce the decrease of unconfined compressive strength due to delayed compaction. Among them, lime was the most effective. 6.From the above mentioned results, several recommendations could be suggested in order to compensate for losses of unconfined compressive strenght and densit v due to delayed compaction. They are a) to use coarse-grained granite soil rather than fined-grained one, b) to add about 3% excess compaction moisture content, c) to increase compactive effort to a certain degree, and d) to use secondary additives like line gypsum-plaster, flyash, and sugar in proper quantity depending on the soil types.

  • PDF

Mechanical Properties of PVC Complexes Using Waste-Gypsum (I) (폐석고를 활용한 PVC 복합체 수지의 기계적 물성 (I))

  • Ho, Dong-Su;Park, Young-Hoon;Nah, Jae-Woon;Choi, Chang-Yong;Kim, Myung-Yul
    • Elastomers and Composites
    • /
    • v.37 no.1
    • /
    • pp.7-13
    • /
    • 2002
  • In this study, mechanical properties of PVC complexes containing the gypsum (Namhae Chemical Co.) which contains phosphte, CaO, etc., Pb-species stabilizer, and $CaCO_3$ were investigated as a function or the content. As a result, mechanical properties increased when the gypsum was mixed with PVC at the extent of 8.46wt%. From this result, it is suggested that the gypsum containing phosphate and CaO is compatible with PVC. Thermogravimetric analysis(TGA) showed that pyrolysis started about at $275^{\circ}C$, and residual weight(%) increased with the amount of the gypsum, and differential scanning calorimetry (DSC) showed that $T_m,\;T_g$ had the maximum and minimum value respectively when the gypsum was mixed with PVC at the extent of 8.46wt%. Comparing all the results, both mechanical and thermal properties of PVC complex were improved. The X-ray diffraction measurement also showed their blonds and structures.

Reducing Phosphorus Release from Paddy Soil by Coal Ash and Phospho-Gypsum Mixture

  • Lee, Chang-Hoon;Lee, Yong-Bok;Lee, Hyub;Ha, Byung-Yun;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.1
    • /
    • pp.12-16
    • /
    • 2005
  • As a silicate source to rice, a coal ash was selected and mixed with phosphor-gypsum (50:50, wt $wt^{-1}$) to reduce the potential of boron toxicity and to supply calcium element. We expected that high con tent of calcium in this mixture might convert water-soluble phosphorus to less soluble forms and then reduce the release of soil phosphorus to surface runoff. The mixture was applied with the rate of 0, 20, 40, and 60 Mg $ha^{-1}$ in paddy soil (Nagdong series, a somewhat excessively drained loamy fine sand) in Daegok, Jinju, Korea The mixture reduced significantly water-soluble phosphorus (W-P) in the surface soils by shifting from W-P and Fe-P to Ca-P and Al-P during whole rice cultivation. In contrast with W-P, plant available phosphorus increased significantly with the mixture application due to high content of phosphorus and silicate in the mixture. The mixture of coal ash and phosphor-gypsum (50:50, wt $wt^{-l}$) would be a good alternative to reduce a phosphorus export in rice paddy soil together with increasing rice yields.

Application of zeolite/kaolin combination for replacement of partial cement clinker to manufacture environmentally sustainable cement in Oman

  • Abdul-Wahab, Sabah A.;Hassan, Edris M.;Al-Jabri, Khalifa S.;Yetilmezsoy, Kaan
    • Environmental Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.246-253
    • /
    • 2019
  • This study was conducted to explore the optimum proportion of zeolite and zeolite-kaolin as additives to cement clinker and gypsum samples, while maintaining the strength properties of produced environmentally sustainable cements. According to the British standard method, zeolite was added to cement clinker in proportions of 5-12% and 10-12% by weight, respectively, in the preparation of samples of zeolite-containing cement and zeolite-kaolin-based cement. Kaolin was used as a second additive as 10-20% of the total weight. The compressive strength tests were performed on base cement samples according to a standard procedure given in ASTM C109 Compressive Strength of Hydraulic Cement. These values were compared with those of the reference sample and the Omani allowable limits. The results indicated that the best compressive strength values were obtained with 88% cement clinker, 5% gypsum, and 7% zeolite for the zeolite-containing cement. Quantities of 70% cement clinker, 5% gypsum, 10% zeolite, and 15% kaolin gave the best results for zeolite-kaolin-based cement, resulting in a substitution of than 25% cement clinker. The study concluded that the partial cement clinker replacement using zeolite/kaolin combination may have a great influence on the reduction of $CO_2$ emission and energy saving in cement manufacturing.

Effect of Soil Amendments on Arsenic Reduction of Brown Rice in Paddy Fields

  • Kang, Dae-Won;Kim, Da-Young;Yoo, Ji-Hyock;Park, Sang-Won;Oh, Kyeong-Seok;Kwon, Oh-Kyung;Baek, Seung-Hwa;Kim, Won-Il
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.51 no.2
    • /
    • pp.101-110
    • /
    • 2018
  • There is an increasing concern over arsenic (As) contamination in rice since Codex Committee on Contaminants in Food (CCCF) discuss on maximum levels for As in rice in 2010. This study was conducted to reduce As concentration in rice by soil amendment treatments in paddy field soils contaminated by As. The selected four amendments were poultry manure, agri-lime, steel slag, and gypsum with the addition of 3% or 5% (w/w) on a dry basis. The As reduction effect could not be verified, as a result of the pot test by adding poultry manure to the paddy soil around the mine located in Yesan. Among the agri-lime treated rice cultivated pots, the As concentration increased up to 32.1%. On the other hand, the content of As in the sample pots treated with steel slag and gypsum decreased by 65.4% and 63.4%, respectively. On the basis of the results of these pot experiments, the field test was carried out in the As polluted rice field around the mine located in Yesan, and when the four amendments were treated, the As content in the brown rice reduced in all the amendment treatments compared with the control plot. The As reduction in brown rice of the amendment was confirmed to be higher efficiency by the order of gypsum > steel slag > poultry manure > agri-lime. As a result of pot experiments using paddy soil around the mine located in Seosan, As stabilization efficiency in rice and As reduction effect could not be determined by comparison to the control. From the rice cultivated from agri-lime treated pot, As concentration increased by 15.8% in rice. On the other hand, the As content of the pots treated with steel slag and gypsum decreased by 39.1% and 60.2%, respectively. In conclusion, distinguished As reducing effectiveness could be expected by soil amendment treatments for rice cultivation.

Analysis of cementation effects on Small-strain Shear Modulus of Sand (모래의 미소변형 전단탄성계수에 대한 고결영향 분석)

  • Lee, Moon-Joo;Choo, Hyun-Wook;Lee, Jong-Sub;Lee, Woo-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1431-1437
    • /
    • 2008
  • The small-strain shear modulus ($G_{max}$) of uncemented sand is affected by the the mean principal stress and void ratio, and it has been known that the cementation and aging also affect to $G_{max}$ of sand. For extensive understanding about the effect of cementation on the $G_{max}$ of sand, a series of bender element tests was conducted on the cemented specimens prepared in a large calibration chamber by pluviation of the sand-gypsum mixture. It was observed from the experimental results that the $G_{max}$ of cemented sand is higher above 10 times than value of uncemented one, and it increases exponentially with the gypsum content increases. Whereas, the increase of the vertical stress from 50kPa to 200kPa and the relative density from 40% to 80% result in 20~30% and 2 times increase of $G_{max}$, respectively. It means that the gypsum content, that is cementation level, is the most influential factor on the $G_{max}$ of cemented sand. In addition, the effect of relative density on $G_{max}$ was more apparent on cemented sand than uncemented one.

  • PDF

Studies on the Effects of Irrigation Control and Gypsum on the Cd Uptake by Different Species of Rice Plant (수도품종별 중금속(重金屬) 흡수억제(吸收抑制)에 대한 물관리(管理) 및 석고(石膏)의 효과)

  • Kim, J.O.;Ha, Y.L.;Kim, B.J.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.11 no.2
    • /
    • pp.113-118
    • /
    • 1979
  • In the soil treated with irrigation control and gypsum, different species of rice plants, Jin-heung, Aggibare, Tong-il, Mil-yang 23, Noindo, Yugnong-chat, were grown. The content of cadmium, copper and zinc in the brown rice was investigated. Results obtained are as follows : 1) Cadmium Content of brown rice was remarkably reduced under the condition to maintain the reduction than oxidation after ear forming stage, and also the application of gypsum was additional effects to reduce cadmium uptake under reduction condition. Zinc and copper contents in the brown rice was similar to calcium reducing, but their effects of reduction were appeared less than cadmium. 2) The reduced tendency of cadmium uptake under the reduction condition was in the order of Tong-il>Mil-yang23>Aggibare>Yugnong-chal>Noindo>Jin-heung. 3) In the oxidzing condition, Jin-heung uptaked cadmium, copper and zinc more than any other species.

  • PDF

Evaluation on Sulfate Attack Resistance of Cement Matrix (시멘트 경화체의 황산염침식 저항성 평가)

  • 문한영;김홍삼;이승태
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.5
    • /
    • pp.141-151
    • /
    • 2000
  • Compressive strength, sulfate deterioration factor(SDF) and length change of 5 types of mortars immersed in sodium sulfate solution were observed. As the results of tests, it was found that the sulfate resistance of blended cement mortars were superior to that of portland cement mortars. Pore volume with diameter larger than 0.1 $\mu\textrm{m}$ of 5 types of pastes indicated that the micro-structures of blended cement pastes were denser, due to pozzolan reaction and latent hydraulic properties, than those of portland cement pastes. The XRD, ESEM, EDS and TG analyses demonstrated that the reactants such as ettringite and gypsum were significantly formed in portland cement pastes. Besides, compared with the $Ca(OH)_2$ content of ordinary portland cement pastes immersed in water and sodium sulfate solution, the $Ca(OH)_2$ contents of fly ash blended cement and ground granulated blast-furnace slag cement paste were about 58% and 28% in water, and 55% and 20% in sodium sulfate solution, respectively.

Geochemistry and Mineralogy of Mine Drainage Water Precipitate and Evaporite Minerals in the Hwasoon Area (화순 폐탄광지역 광산배수와 침전 및 증발잔류광물에 대한 지구화학적 및 광물학적 연구)

  • 박천영;정연중;강지성
    • Economic and Environmental Geology
    • /
    • v.33 no.5
    • /
    • pp.391-404
    • /
    • 2000
  • This study investigated the geochemical characteristics of mine drainage discharged from an abandoned coal mine in the Hwasoon area. Surface water samples were collected from 23 locations along the Hancheon creek. The concentration of Zn and Cu in stream waters was highest at low pH (3.53), whereas the content of TDS and TDI was highest at high pH (7.78) due to the concentration of Ca, $HCO_3$ and $SO_4$. At the upstream site, the Ba, Fe, Mn, Zn, and $SO_4$ contents were relatively high but decreased significantly with the distance from the coal mine. On the contrary, the Na and $NO_3$ contents were low at the upstream site but increased downstream. Yellow precipitate material collected in the Hancheon consisted mainly of iron and LOI. This yellow precipitate was heated from 100 to $900^{\circ}C$ for 1 hour. With increasing temperature, the intensity of hematite peaks were sharply produced in X-ray pattern and the absorption band Fe-O of hematite increased in IR due to dehydration and melting. The yellow to brown precipitate and evaporite materials were collected by a air-dry from the acid mine water at the laboratory. After drying, the concentration of ions in the acid water samples increased progressively in oversaturation with respect to either gypsum, ferrohexahydrite or quenstedetite. The X-ray powder diffraction studies identified that the precipitated and evaporated materials after drying were well crystallized gypsum, ferrohexahydrite and quenstedetite. Diagnostic peaks used for identification of gypsum were the 7.65, 4.28, 3.03, 2.87 and 2.48$\AA$ peaks and those for ferrohexahydrite were the 5.46, 5.12, 4.89, 4.44, 4.05, 3.62, 3.46, 3.40, 3.20, 3.03, 2.94, 2.53, 2.28, 2.07, 1.88 and 1.86${\AA} peaks. The IR spectra with OH-stretching, deformation of $H_2O$and ${SO_4}^{2-}$stretching vibration include the existence of gypsum, ferrohexahydrite and quenstedetite in the precipitated and evaporite materials. In the SEM and EDS analysis for the evaporite material, gypsum with well-crystallized, acicular, and columnar form was distinctly observed.

  • PDF