• Title/Summary/Keyword: gypsum board

Search Result 99, Processing Time 0.032 seconds

Effect of Increase in Thickness of Gypsum Board Composite Panel on Improvement in Out-of-plane Drywall Stiffness (석고보드 복합패널의 후판화에 따른 면외방향 내력 증대 효과)

  • Shin, Yun-Ho;Ji, Suk-Won;Choi, Soo-kyung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.14-15
    • /
    • 2019
  • The demand for drywall is increasing as the structural type of apartment building is changing to a rigid frame structure. At present, the thickness of the gypsum board used for drywall is mostly 9.5mm and is required to be changed to 12.5mm to improve the performance of the wall. A structural safety test has been conducted in accordance with KS F 2613 to verify the effect of changing the thickness of the gypsum board to 12.5mm in terms of improvement as to stiffness. As a result of the test, the stiffness of the drywall has increased by about 19.6% and the impact resistance by about 30.4%.

  • PDF

Physical and Mechanical Properties, Thermal Conductivity and Fire-Proof Performance of Wood-Cement Board (목질.시멘트보드의 물리.기계적 성질, 열전도성 및 내화성)

  • 서진석;박종영
    • Journal of the Korea Furniture Society
    • /
    • v.14 no.2
    • /
    • pp.31-38
    • /
    • 2003
  • This study was carried out to investigate characteristics of wood-based panels and wood-cement board for the possible uses as flooring and wall materials. The optimum cement/wood ratio(C/W ratio) of wood~cement board manufactured by clamp-pressing was from 2.7 to 3.2. The dimesional stability was superior in the C/W ratio of 3.2. Particularly, the dimensional stability of cement board using fine particle for particleboard face layer was favorable through three levels of C/W ratio. According to types of wooden material, bending strength of cement board using coarse particle for particleboard core layer or old newspaper(ONP) fiber was relatively higher than others. Thermal conductivities of wood-cement boards were no lower than that of gypsum board, and higher than those of plywood and boards. In case of wood-cement board of the C/W ratio of 2.7, the fire-proof performances of cement composite boards were greater than that of gypsum board, and weight loss reached to about a half of gypsum board. Then, wood-cement boards showed superior fire-proof performance compared to wood-based panels.

  • PDF

Combined Effect of Fireproofing Gypsum Board on Residual Strength and Fire Resistance of Fiber Addition High Strength Concrete-Model Column (방화석고보드 부착이 섬유혼입 고강도 콘크리트 모의 기둥부재의 내화특성 및 잔존내력에 미치는 영향)

  • Yang, Seong-Hwan
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.4
    • /
    • pp.442-450
    • /
    • 2012
  • In this study, fire resistance and residual strength were examined after the addition of PF fiber and bonding fireproofing gypsum board to a high strength concrete-model column of 50 MPa grade. At the beginning of the experiment, all the properties of base concrete appeared to satisfy the target range. In terms of the internal temperature record, a trend of slightly high temperature was shown when the fireproofing gypsum board was not bonding, and when the fireproofing gypsum board was bonding, as PF content increased gradually, the temperature was gradually lowered. In terms of the relationship, as time elapsed a low temperature was shown when fiber was mixed, and when the board was bonding, the trend of lower temperature could be confirmed. Meanwhile, in terms of spalling property, a severe explosive fracture was generated at PF 0%, and falling off was prevented as the fiber content was increased; however, discoloration and a multitude of cracks were discovered, and when the board was bonding, the trend in which the exterior became satisfactory when the content was increased emerged. In terms of the residual compressive strength, measuring of strength could not be performed at PF 0% without bonding of board, and the strength was increased as the fiber content was increased; however, there was a decrease in strength of about 30 ~ 40%, and in the case of PF 0% with the bonding of board, the strength could be measured; however, about an 80% decrease in strength was shown, and only about a 10 ~ 20% decline in strength was displayed, as the range of decrease was reduced as the fiber content was increased. Considering all of these factors, it was determined that a more efficient enhancement of fire resistance was obtained when two methods are applied in combination rather than when the PF fiber content and bonding of fireproofing gypsum board are utilized individually.

The Evaluation of Fire Safety Performance on Interior Finish Materials (Gypsum Board, Plywood) (건물내장재(석고보드, 합판)의 화재성능평가)

  • 김충환;김종훈;김운형;하동명;이수경
    • Fire Science and Engineering
    • /
    • v.15 no.3
    • /
    • pp.55-62
    • /
    • 2001
  • The fire performance evaluation methods in Korea and overseas for interior finish materials were analysed and tested with gypsum board and Plywood by using room corner test not adopted by domestic code until now. The results of gypsum board (thickness:8 mm) and Plywood (thickness:4 mm) applying NFPA 265 and ISO 9705 test respectively are satisfied the assessment criteria. To assess a actual fire performance and classify fire hazard levels for interior finish materials, room-corner test and flame spread models should be adopted in building code and fire code to overcome limitations of current bench-scale test method.

  • PDF

A Study on Radon Emission Reduction of Construction Materials using Radon-reducing Agent (라돈 저감제를 이용한 건축자재의 라돈 방출 저감 연구)

  • Park, Kyung-Buk;Lee, Sang-Houck
    • Journal of Environmental Health Sciences
    • /
    • v.40 no.6
    • /
    • pp.484-491
    • /
    • 2014
  • Objectives: A radon emission reducing agent was prepared using charcoal and zeolite, and the amount was measured after coating construction materials with the agent. The availability of the radon emission reducing agent was evaluated. Methods: Construction materials (red brick, cement brick, and gypsum board) coated with reducing agent were placed in a chamber to measure radon emissions. The construction materials were coated one through three times. The spread volume for brick and gypsum board was 50 mL and 75 mL per application, respectively. The amount of radon emitted was measured by RAD-7 after 48 hours. Results: The reduction ratio increased with the number of coatings, and the reduction ratios for red brick, cement brick, and gypsum board were 63.3, 73.6, and 58%, respectively, in the case of three coatings of RA-1. The reduction ratios for red brick, cement brick, and gypsum board were 42.8, 58.1, and 26.2%, respectively in the case of three coatings with RA-2. RA-1 was slightly better than RA-2 in radon emission reduction. Conclusions: Radon emissions from construction materials decreased according to the concentration of reducing agent coating, and it was more effective than existing methods.

Study on the Conduction Heat Transfer Characteristics According to the Heating Temperature of Lightweight Panel Wall material (경량칸막이 벽체재료의 수열온도에 따른 전도 열전달 특성 연구)

  • Park, Sang-Min;Lee, Ho-Sung;Choi, Su-Gil;Kim, Si-Kuk
    • Fire Science and Engineering
    • /
    • v.32 no.1
    • /
    • pp.46-56
    • /
    • 2018
  • The paper relates to a study on the conduction heat transfer characteristics according to the heating temperature of lightweight panel wall material. Plywoods, marbles, heat resistant glasses, as well as general gypsum board and fire-proof gypsum board, which have been widely used for lightweight panel wall material, were selected as experiment samples, and heating temperatures were set as $100^{\circ}C$, $200^{\circ}C$, $300^{\circ}C$, $400^{\circ}C$, $500^{\circ}C$ and $600^{\circ}C$. Next, each of the heating temperatures were introduced on the bottom part of the wall material for 30 minutes, and analyses were made on the heat transfer characteristics to the backside part on the top part through conduction. As results of the experiment, the maximum backside temperatures were measured up to $190^{\circ}C$ for a general gypsum board, $198^{\circ}C$ for a fire-proof gypsum board, $189^{\circ}C$ for a plywood, $321^{\circ}C$ for a marble, and $418^{\circ}C$ for a heat resistant glass as heating temperatures were introduced maximum of $600^{\circ}C$. In addition, the maximum change rate of conduction heat transfer were measured up to 85 W for a general gypsum board, 95 W for a fire-proof gypsum board, 67 W for a plywood, 1686 W for a marble, and 3196 W for a heat resistant glass as the maximum heating temperatures were introduced up to $600^{\circ}C$. Also, carbonization characteristics of the wallpapers were measured to visually check the danger of conduction heat transfer, and the results showed that smokes were first generated on the attached wallpapers for the heating temperature $600^{\circ}C$, which were 1021 s for a general gypsum board, 978 s for a fire-proof gypsum board, 1395 s for a plywood, 167 s for a marble, and 20 s for a heat resistant glass, and that the first generation of carbonization were 1115 s for a general gypsum board, 1089 s for a fire-proof gypsum board, 1489 s for a plywood, 192 s for a marble, and 36 s for a heat resistant glass.

A Study on the Application of Gypsum Board through the Application of Fire Resistance Ceiling Structure (내화천장구조 적용을 통한 석고보드 활용 확대에 관한 연구)

  • Choi, Dong-ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.217-218
    • /
    • 2019
  • Fire resistance ceiling system is the structure of which the ceiling installed under the slave of the structure has the fire resistance performance. Because of having the fire resistance performance, fire resistive coatings on steel beams can be reduced and large span structures can be constructed. So, it have advantages of convenience for construction, shorten for construction time and cost reducing. In foreign country, it is general that one system consisting of slave and ceiling is constructed as a fire resistance system, in these cases, gypsum boards are mostly used as ceiling materials. The purpose of this study was to explain the possibility of expanding the use of gypsum boards by securing fire resistance performance of these ceilings.

  • PDF

Development and Performance Evaluation of X-Ray Shields using Fe2O3 and Al2O3 (산화철, 알루미나를 이용한 X선 차폐체 개발 및 성능 평가)

  • Hui-Su, Yang;Ji-Hwan, Kim;Min-Cheol, Jeon
    • Journal of Advanced Technology Convergence
    • /
    • v.1 no.2
    • /
    • pp.19-25
    • /
    • 2022
  • It is intended to evaluate the performance of the shield after manufacturing a shield with cheap and eco-friendly iron oxide and alumina instead of lead, which is a radiation shielding material. After manufacturing the shield by mixing iron oxide and alumina with gypsum, the performance is evaluated by comparing it with gypsum board and lead apron using an X-ray tube. As a result of the experiment, the shielding performance of alumina was lower than that of the gypsum board, and when 50% of alumina was contained, the shielding performance was similar to that of the gypsum board. Iron oxide became similar to the shielding performance of lead apron when it contained about 75%. A shielding material using alumina shows shielding performance similar to that of gypsum, so it is not suitable as a substitute for lead. However, since iron oxide exhibits similar shielding performance to lead, it can be used as an X-ray shielding material to replace lead in the future, so further research is needed.

Evaluation of Humidity Control Ceramic Board Using Gypsum Binder (석고계 바인더를 활용한 습도도절 세라믹 보드의 특성 평가)

  • Lee, Jong-Kyu;Kim, Tae-Yeon
    • Korean Journal of Materials Research
    • /
    • v.28 no.1
    • /
    • pp.62-67
    • /
    • 2018
  • Active clay, bentonite and zeolite were used as porous materials for humidity controlling ceramic boards. The specific area and the pore volume of active clay were higher than bentonite and zeolite. The flexible strength of the gypsum board decreased with an increasing amount of porous material, and the flexible strength was lowest when active clay with a higher specific surface area than others porous materials was added. The specific surface area and total pore volume of ceramic boards containing porous material were highest at $102.25m^2/g$, $0.142cm^3/g$, respectively, when the active clay was added. In addition, as the amount of added porous materials increased, the specific surface area and total pore volume of the ceramic board increased, but the average pore diameter decreased. The addition of s porous materials with a high specific area and a large pore volume improved the moisture absorptive and desorptive performance of the ceramic board. Therefore, in this experiment, the moisture absorptive and desorptive properties were the best when active clay was added. Furthermore, as the amount of added porous materials increased, the moisture absorptive and desorptive properties improved. When 70 mass% of active clay was added to ${\alpha}$-type gypsum, the hygroscopicity was the highest, about $300g/m^2$, in this experiment.

A Study on the Development of a Dry PFB Method with High Fire Resistance (고강도콘크리트 내화성능을 확보한 건식화 PFB 공법 개발에 관한 연구)

  • Kim, Woo-Jae;Jung, Sang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.49-52
    • /
    • 2008
  • The present study was to develop a dry PFB method similar to the existing gypsum board construction method in order to apply the existing wet PFB method that uses fire-resistant adhesive. It was found that the existing wet method can produce concrete compressive strength of 80MPa and fire resistance of 3 hours with 30mm PF boards. The goal of development in this study was fire resistance of 3 hours through dry construction of 15mm fire-resistant boards. 1. Improved PF board was prepared by adding inorganic fiber to existing board and using aggregate with grain size of 3mm or less. Molding was done at temperature higher than that for existing PF board molding. While wet curing is used for existing PF boards, this study used dry curing in order to enhance heat insulation performance. 2. According to the results of fire resistance test, when the dry PF method was applied, the temperature of the main reinforcing bar was 116℃ in 15mm, 103.8℃ in 20mm, and 94℃ in 25mm, and these results satisfied the current standards for fire resistance control presented by the Ministry of Land, Transport and Maritime Affairs. When a 3-hour fire resistance test was performed and the external properties of the specimen were examined, the outermost gypsum board hardly remained and internal PF board maintained its form without thermal strain.

  • PDF