• Title/Summary/Keyword: guyed tower

Search Result 17, Processing Time 0.021 seconds

Nonstationary Response Analysis of Offshore Guyed Tower for Strong Earthquakes (비정상과정의 강한 지진에 대한 해양 가이드 타워의 동력학적 응답해석)

  • 류정선
    • Computational Structural Engineering
    • /
    • v.5 no.3
    • /
    • pp.127-137
    • /
    • 1992
  • A method for nonstationary response analysis of an offshore guyed tower subjected to earthquake loading is presented. The nonstationarity of the earthquake excitation is modeled by imposing a time varying envelope function onto a stationary random model. By taking the envelope function and the auto-correlation function of ground acceleration in terms of complex exponential functions of time, an analytical procedure is developed for computing time varying variances of the tower response. Example analysis indicates that the maximum responses estimated by considering nonstationary effect properly are significantly less than those obtained by the conventional frequency domain analysis method based upon the stationary assumption.

  • PDF

Dynamic Response Analysis of Offshore Guyed Tower Subjected to Strong Earthquake under Moderate Random Waves (지진과 파랑하중을 동시에 받는 해양 가이드 타워의 비정상 동적 응답해석)

  • Ryu, Chung Son;Yun, Chung Bang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.65-75
    • /
    • 1993
  • Presented is a method for nonstationary response analysis of an offshore guyed tower subjected to strong earthquake motions under moderate random waves and current loadings. By taking the time varying envelope function and the auto-correlation function of the ground acceleration in terms of complex exponential functions, an analytical procedure is developed for computing time varying variances of the tower response. The stationary responses due to small random waves are obtained by using frequency domain method, and the results are combined with the nonstationary results due to earthquakes. Finally, the expected maximum responses are estimated. Through the example analyses, the nonstationary method developed in this study is verified, and the contributions of the earthquake, wave and current loadings to the total maximum response are investigated.

  • PDF

Reliability Analysis of Offshore Guyed Tower Against Anchor Pile Failures (해양 가이드-타워의 고정말뚝에 대한 신뢰도 해석)

  • 류정선;윤정방;강성후
    • Computational Structural Engineering
    • /
    • v.4 no.3
    • /
    • pp.117-127
    • /
    • 1991
  • For the reliability analysis of offshore guyed towers for large storm events, failure of an anchor pile of the guyline system is investigated. Two failure modes of the anchor pile due to the extreme and the cyclic wave loadings are considered. The probability of failure due to the extreme anchor load is evaluated based on the first excursion probability analysis. Degradation of the pile capacity due to cyclic loadings is evaluated by using empirical fatigue curves for a driven pile in clay. The numerical results indicate that the failure probability due to the cyclic loadings can be as large as the risk due to extreme loading, particularly for the cases with the low design safety level of the pile strength and the large uncertainty of the pile resistance.

  • PDF

Assessment of vertical wind loads on lattice framework with application to thunderstorm winds

  • Mara, T.G.;Galsworthy, J.K.;Savory, E.
    • Wind and Structures
    • /
    • v.13 no.5
    • /
    • pp.413-431
    • /
    • 2010
  • The focus of this article is on the assessment of vertical wind vector components and their aerodynamic impact on lattice framework, specifically two distinct sections of a guyed transmission tower. Thunderstorm winds, notably very localized events such as convective downdrafts (including downbursts) and tornadoes, result in a different load on a tower's structural system in terms of magnitude and spatial distribution when compared to horizontal synoptic winds. Findings of previous model-scale experiments are outlined and their results considered for the development of a testing rig that allows for rotation about multiple body axes through a series of wind tunnel tests. Experimental results for the wind loads on two unique experimental models are presented and the difference in behaviour discussed. For a model cross arm with a solidity ratio of approximately 30%, the drag load was increased by 14% when at a pitch angle of $20^{\circ}$. Although the effects of rotation about the vertical body axis, or the traditional 'angle of attack', are recognized by design codes as being significant, provisions for vertical winds are absent from each set of wind loading specifications examined. The inclusion of a factor to relate winds with a vertical component to the horizontal speed is evaluated as a vertical wind factor applicable to load calculations. Member complexity and asymmetric geometry often complicate the use of lattice wind loading provisions, which is a challenge that extends to future studies and codification. Nevertheless, the present work is intended to establish a basis for such studies.

A Study on a Nonlinear Cable Finite Element (非線形 케이블 有限要素에 관한 硏究)

  • 장승필;박정일
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.1 no.1
    • /
    • pp.93-101
    • /
    • 1989
  • A geometrically nonlinear cable finite element is presented to use in the static or dynamic modeling of offshore and onshore structures such as guyed tower, tension leg platform or mooring buoy, submarine cable, cable-stayed bridge, suspension bridge, cable roof and so on. The cable finite element is derived directly from the compatibility equations and flexibility matrix of elastic catenary cable theory for the arbitary plane loading and geome try. A general and virsatile computer program has been developed to perform the analyses of cable member itself or cable guyed or suspened structures, in which Newmark-$\beta$ method is used to obtain a time domain solution and Newton-Raphson iteration method is used to solve the nonlinear system of compatibility equations of cable and algebraic static or dynamic equations at each time step. The results from the static and dynamic analysis of a cable member by the computer program are summarized and presented.

  • PDF

Vortex induced vibration and its controlling of long span Cross-Rope Suspension transmission line with tension insulator

  • Tu, Xi;Wu, Ye;Li, Zhengliang;Wang, Zhisong
    • Structural Engineering and Mechanics
    • /
    • v.78 no.1
    • /
    • pp.87-102
    • /
    • 2021
  • Long span cross-rope suspension structure is an innovative structural system evolved from typical Cross-Rope Suspension (CRS) guyed tower, a type of supporting system with short span suspension cable supporting overhead power transmission lines. In mountainous areas, the span length of suspension cable was designed to be extended to hundreds or over one thousand meters, which is applicable for crossing deep valleys. Vortex Induced Vibration (VIV) of overhead power transmission lines was considered to be one of the major factors of its fatigue and service life. In this paper, VIV and its controlling by Stockbridge damper for long span CRS was discussed. Firstly, energy balance method and finite element method for assessing VIV of CRS were presented. An approach of establishing FE model of long span CRS structure with dampers was introduced. The effect of Stockbridge damper for overall vibration of CRS was compared in both theoretical and numerical approaches. Results indicated that vibration characteristics of conductor in long span CRS compared with traditional tower-line system. Secondly, analysis on long span CRS including Stockbridge damper showed additional dampers installed were essential for controlling maximum dynamic bending stresses of conductors at both ends. Moreover, factors, including configuration and mass of Stockbridge damper, span length of suspension cable and conductor and number of spans of conductor, were assessed for further discussion on VIV controlling of long span CRS.

Tensile Strength on Connection Socket of Cables (케이블 연결 소켓의 인장강도)

  • Park, Kang-Geun;Lee, Jang-Bok;Ha, Chae-Won;Kim, Jae-Bong
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.37-42
    • /
    • 2008
  • Cable member in structure is tension systems in which the load carrying members transmit loads to support system by tensile stress with no compression or flexure allowed. Cable system have been widely used large span structure roof, air-supported structure, prestressed membrane, cable network roof, suspension structures, guyed tower, ocean platforms, suspension bridges. Cable member can transmit loads by the edge connected system such as socket, swaging, mechanical splice sleave, clip, wedge, loop splice etc. This study will shown an experimental results on the strength of connection socket of cables. In the results of experiment, most of cable connection specimen occurred the failure at the connection socket part before the cable arrived at tensile failure load.

  • PDF