• Title/Summary/Keyword: guyed tower

Search Result 17, Processing Time 0.032 seconds

Dynamic Analysis of Guyed Tower Subjected to Wave Forces (파랑하중에 대한 Guyed Tower의 동적해석)

  • Ryu, Jung Sun;Yun, Chung Bang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.4
    • /
    • pp.87-94
    • /
    • 1985
  • Dynamic analysis of guyed tower is presented in this paper. The scope of the study is twofold. The one is to determine an efficient analysis method to include the nonlinearity of the mooring system and the nonlinear hydrodynamic wave forces. The other is to investigate the sensitivity of two major design parameters, that is the stiffness of mooring system and the fixity condition of the tower at mud line. Time history analysis method utilizing mode superposition is mainly considered. However several other methods are also used for the purpose of comparison. Analyses are carried out using the Lena Guyed Tower, which is the first structure of this kind, as a standard structure.

  • PDF

Nonlinear Dynamic Behaviors of Offshore Guyed Towers (해양구조물 Guyed Tower의 비선형 동적거동)

  • Park, Woo-Sun;Pyen, Chong-Kun;Park, Young-Suk
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.3 no.3
    • /
    • pp.126-136
    • /
    • 1991
  • This study is concerned with the nonlinear dynamic behaviors of guyed towers for wave loadings. In order to analyze the nonlinear responses of guyed towers efficiently, the main tower is modeled as an equivalent stick, the guyline system is idealized as a spring with nonlinear stiffness in the horizontal direction. and the pile foundation system is represented as a linear spring in the rotational direction. The wave forces on the main tower are evaluated by using Morison's equation. In order to consider adequately the nonlinearities of the guying system and drag forces due to fluid viscosity. the analyses are performed in the time domain. The mode superposition method is adopted for solving the nonlinear equation of motion efficiently. which is based on the Newmark integration scheme. Numerical analyses are carried out to investigate the sensitivity of two major design parameters for guyed towers. i.e., the clump weight conditions and the base renditions of the tower.

  • PDF

A Reliability Analysis of a Guyed Tower (Guyed Tower의 신뢰성 해석)

  • Tae-B.,Ha;Hang-S.,Choi
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.24 no.2
    • /
    • pp.29-35
    • /
    • 1987
  • As offshore activities move into deeper ocean, conventional fixed-base platforms drastically increase in size and cost, One of alternatives available is a guyed tower, in which environmental loads are supported by guylines instead of structural members. The guying system of the guyed tower is designed on one hand to be stiff enough to limit the structural displacement in normal operations, but on the other hand to be soft enough to permit large slow sways during the presence of design-level storms. This compliancy provides an efficient means of withstanding harsh environment so that the disproportionate increase in size of deep water platforms can be kept to a rational limit. Novel configurations contain always some degrees of potential risks mainly due to the lack of experience. The most critical hazard inherent to a guyed tower may be the pullout of anchor piles. Once it happens, the guyline fails to function and it may eventually lead to the total collapse of the system. It is the aim of this paper to discuss and quantify the anchor-pullout risk of a guyed tower. A stochastic analysis is made for evaluating the first-upcrossing probability of the tension acting on anchor piles over the uplift capacity. Nonlinearities involved in the mooring stiffness and hydrodynamics are taken into account by using time-domain analysis. A simplified two dimensional dynamic model is developed to exemplify the underlying concept. Real hurricane data in the Gulf of Mexico spanning over 70 years are incorporated in a numerical example of which result clearly indicates highly potential risk of anchor pullout.

  • PDF

Dynamic Analysis of Guyed Tower Subjected to Random Waves (랜덤파랑하중에 대한 Guyed Tower의 동적 거동해석)

  • 유정선;윤정봉
    • Journal of Ocean Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.57-64
    • /
    • 1987
  • Methods of nonlinear stochastic analysis of guyed towers are studied in this paper. Two different kinds of nonlinearities are considered. They are the nonlinear restoring force from the guying system and the nonlinear hydrodynamic force. Analyses are carried out mainly in the frequency domain using linearization techniques. Two methods for the linearization of the nonlinear stiffness are presented, in which the effects of the steady offset and the oscillating component of the structural motion can be adequately analyzed. those two methods are the equivalent linearization method and the average stiffness method. The linearization of the nonlinear drag force is also carried out considering the effect of steady current as well as oscillatory wave motions. Example analyses are performed for guyed tower in 300m water. Transfer functions and the expected maximum values of the deck displacement and the bending moment near the middle of the tower are calculated. Numerical results show that both of the frequency domain methods presented in this paper predict the responses of the sturcture very reasonably compared with those by the time integration method utilzing the random simulations wave particla motions.

  • PDF

A Study on the Behaviour of Mooring System for Guyed Tower (Guyed Tower의 계류시스템에 관한 연구)

  • Park, Young Suk;Lee, Myong Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.1
    • /
    • pp.11-23
    • /
    • 1989
  • This paper presents the results of the numerical analysis on the behaviour of mooring system of offshore guyed tower. Finite element method is used and geometric nonlinearities are considered in the analysis of mooring line. The governing equilibrium equations are derived by the principle of virtual work, and modified Newton-Raphson method and Newmark-${\beta}$ method are employed in response calculations. The drag and inertia effects of fluid are included using a Morrison type equation. The influences of changing typical parameters like initial inclination and tension of line at the guy attachment point, the length of clump weight, its unit weight and the anchor line length are examined. The effects of idealising the clump weight as a point load(lumped clump weight) on the behaviour of mooring lines are also discussed. Numerical examples demonstrate the validity and capability of the mathematical formulation.

  • PDF

Static and dynamic analysis of guyed steel lattice towers

  • Meshmesha, Hussam M.;Kennedy, John B.;Sennah, Khaled;Moradi, Saber
    • Structural Engineering and Mechanics
    • /
    • v.69 no.5
    • /
    • pp.567-577
    • /
    • 2019
  • Guyed steel lattice towers (or guyed masts) are widely used for supporting antennas for telecommunications and broadcasting. This paper presents a numerical study on the static and dynamic response of guyed towers. Three-dimensional nonlinear finite-element models are used to simulate the response. Through performing static pushover analyses and free-vibration (modal) analyses, the effect of different bracing configurations is investigated. In addition, seismic analyses are performed on towers of different heights to study the influence of earthquake excitation time-lag (or the earthquake travel distance between tower anchors) and antenna weight on the seismic response of guyed towers. The results show that the inclusion of time lag in the seismic analysis of guyed towers can influence shear and moment distribution along the height of the mast. Moreover, it is found that the lateral response is insensitive to bracing configurations. The results also show that, depending on the mast height, an increased antenna weight can reduce the tower maximum base shear while other response quantities, such as cables tension force are found to be insensitive to variation in the antenna weight.

Dynamic Analysis of Guyline in the Offshore Guyed Towers Considering Sea Bed Contact Conditions (심해용 Guyed Tower 계류선의 해저면과의 접촉조건을 고려한 동적 해석)

  • 이명우;박우선;박영석
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.3 no.4
    • /
    • pp.244-254
    • /
    • 1991
  • The numerical analysis on tile behaviour of mooring system in the offshore guyed tower is presented. The governing equilibrium equations are derived by the principle of virtual work. The drag and inertia effects of fluid are included in a Morrison type equation. The finite element method is used in the computation. Geometric nonlinearities for the analysis of the mooring line are considered in which both modified Newton-Raphson method and Newmark-$\beta$ method are employed. Numerical experiments show the validity and the capability of the developed mathematical formulation.

  • PDF

Behaviour of guyed transmission line structures under downburst wind loading

  • Shehata, A.Y.;El Damatty, A.A.
    • Wind and Structures
    • /
    • v.10 no.3
    • /
    • pp.249-268
    • /
    • 2007
  • Past experience indicates that the majority of failures of electrical transmission tower structures occurred during high intensity wind events, such as downbursts. The wind load distribution associated with these localized events is different than the boundary layer wind profile that is typically used in the design of structures. To the best of the authors' knowledge, this study represents the first comprehensive investigation that assesses the effect of varying the downburst parameters on the structural performance of a transmission line structure. The study focuses on a guyed tower structure and is conducted numerically using, as a case study, one of the towers that failed in Manitoba, Canada, during a downburst event in 1996. The study provides an insight about the spatial and time variation of the downburst wind field. It also assesses the variation of the tower members' internal forces with the downburst parameters. Finally, the structural behaviour of the tower under critical downburst configurations is described and is compared to that resulting from the boundary layer normal wind load conditions.

Characterization of the wind-induced response of a 356 m high guyed mast based on field measurements

  • Zhe Wang;Muguang Liu;Lei Qiao;Hongyan Luo;Chunsheng Zhang;Zhuangning Xie
    • Wind and Structures
    • /
    • v.38 no.3
    • /
    • pp.215-229
    • /
    • 2024
  • Guyed mast structures exhibit characteristics such as high flexibility, low mass, small damping ratio, and large aspect ratio, leading to a complex wind-induced vibration response mechanism. This study analyzed the time- and frequency-domain characteristics of the wind-induced response of a guyed mast structure using measured acceleration response data obtained from the Shenzhen Meteorological Gradient Tower (SZMGT). Firstly, 734 sets of 1-hour acceleration samples measured from 0:00 October 1, 2021, to 0:00 November 1, 2021, were selected to study the vibration shapes of the mast and the characteristics of the generalized extreme value (GEV) distribution. Secondly, six sets of typical samples with different vibration intensities were further selected to explore the Gaussian property and modal parameter characteristics of the mast. Finally, the modal parameters of the SZMGT are identified and the identification results are verified by finite element analysis. The findings revealed that the guyed mast vibration shape exhibits remarkable diversity, which increases nonlinearly along the height in most cases and reaches a maximum at the top of the tower. Moreover, the GEV distribution characteristics of the 734 sets of samples are closer to the Weibull distribution. The probability distribution of the structural wind vibration response under strong wind is in good agreement with the Gaussian distribution. The structural response of the mast under wind loading exhibits multiple modes. As the structural response escalates, the first three orders of modal energy in the tower display a gradual increase in proportion.

Simple method for static and dynamic analyses of guyed towers

  • Meshmesha, H.;Sennah, K.;Kennedy, J.B.
    • Structural Engineering and Mechanics
    • /
    • v.23 no.6
    • /
    • pp.635-649
    • /
    • 2006
  • The static and dynamic responses of guyed telecommunication towers can be determined by using two models, the space truss element model, and the equivalent beam-column element model. The equivalent beam-column analysis is based on the determination of the equivalent shear, torsion, and bending rigidities as well as the equivalent area of the guyed mast. In the literature, two methods are currently available to determine the equivalent properties of lattice structures, namely: the unit load method, and the energy approach. In this study, an equivalent beam-column analysis is introduced based on an equivalent thin plate approach for lattice structures. A finite-element modeling, using suitably modified ABAQUS software, is used to investigate the accuracy of utilizing the different proposed methods in determining the static and dynamic responses of a guyed tower of 364.5-meter high subjected to static and seismic loading conditions. The results from these analyses are compared to those obtained from a finite-element modeling of the actual structure using 3-D truss and beam elements. Good agreement is shown between the different proposed beam-column models, and the model of the actual structure. However, the proposed equivalent thin plate approach is simpler to apply than the other two approaches.