• 제목/요약/키워드: gully-pots sediments

검색결과 5건 처리시간 0.023초

도로변 우수관 퇴적물의 중금속오염 (I) : 서울시 동부지역 (The heavy metal contaminations of sediments from some gully-pots : eastern part of seoul, Korea)

  • 이평구;김성환;윤성택
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제6권4호
    • /
    • pp.25-40
    • /
    • 2001
  • 중금속오염 정도를 조사하기 위해, 서울시 동부의 13개 구에서 280개 우수관퇴적물을 채취하였다. 오염되지 않은 하천 표사시료도 비교하기 위해 연구되었다. 퇴적물의 물리화학적 특성과 Cd, Co, Cr, Cu, Ni, Pb, 및 Zn 분포에 관한 연구가 수행되었다. 우수관퇴적물과 오염되지 않은 표사시료의 총 중금속 함량은 산분해방법을 이용하여 분석하였다. 먼저 질산으로 분해한 뒤, 다시 질산과 과염소산의 혼합산으로 산분해하였다. 우수관퇴적물은 특징적으로 Zn, Cu, Pb및 Cr함량이 매우 높았으며, 이는 우수관퇴적물이 이들 원소에 의해 인위적으로 오염된 것을 지시하고 있다. 우수관퇴적물에 포함된 중금속 함량은 오염되지 않은 하천 표사시료의 평균 중금속 함량에 비해 원소에 따라 약 1-329배 높게 나타났다. 특히, 가장 높은 Zn, Cu, Pb 및 Cr평균값을 나타낸 지역은 각각 여의도, 중구, 중구 및 동대문구에서 채취한 우수관퇴적물이었다. 비즈니스 지역과 상업지역에서의 평균 Zn 함량은 산업공단지역의 Zn 함량보다 2-305배 높다. 이것은 Zn이 주로 자동차 교통량(자동차 타이어)에서 기인된 것을 지시한다. 평균 Cu와 Cr의 함량은 상업지역과 산업공단지역에서 높게 나타났으며, 이는 산업활동이 우수관퇴적물에 Cu와 Cr 축적을 야기시키고 있다는 것을 지시하고 있다. 우수관퇴적물의 Pb 함량은 비교적 낮았으며, 이는 1987년 이후 무연휘발유를 사용하는 것에 기인하였다.

  • PDF

Heavy Metal Contamination of Roadside Gully-Pot Sediments, Seoul, Korea

  • Kim, Sung-Hwan;Lee, Pyeong-Koo;Yun, Seong-Taek;So, Chil-Sup
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2001년도 총회 및 춘계학술발표회
    • /
    • pp.222-225
    • /
    • 2001
  • In urban environments, the surface land impermeability fundamentally related to urban growth emphasizes the environmental problems such as the storm water peak flow (so-called the urban flooding) and the pollution. The conventional urban drainage system provides a number of temporary reservoirs intercepting and retaining surface-derived pollutants following their introduction to and deposition upon the impermeable surface. Gully-pots are common features in urban drainage systems in Korea, which were installed for draining rainwater to prevent regurgitation in rainy season and retaining larger particles, hence minimizing pipe blockage problems. When the road runoff conveying sediment enters a gully-pot, the sediment mixes with the gully liquor causing direct pollution of receiving waters. The characteristics of local sediment contamination are usually related to the types of land use activities that take place or have taken place within the area., This study was undertaken to evaluate the spatial and temporal variations of the contamination of gully-pot sediments in Seoul with respect to heavy metals such as As, Cd, Co, Cr, Ni, Pb, Cu and Zn. The heavy metal data were examined according to the land use type. In this paper, sampling sites in Seoul were divided into six groups (commercial area, industrial area, residental area, motor way, rural area, and local pollution).

  • PDF

서울시 우수관에서 채취한 도로변 퇴적물의 중금속오염의 공간적 변화 (Spatial variability of heavy metal contamination of urban roadside sediments collected from gully pots in Seoul City)

  • 이평구;유연희;윤성택;신성천
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제8권2호
    • /
    • pp.19-35
    • /
    • 2003
  • In order 새 investigate the spatial and seasonal variations of heavy metal pollution in heavily industrialized urban area, urban roadside sediments were collected for five years from gully pots in Seoul City. A series of studies have been carried out concerning the physicochemical characteristics of the sediments in order to evaluate the contamination of heavy metals such as Cd, Co, Cr, Cu, Ni, Pb and Zn. Roadside sediments and uncontaminated stream sediments were analyzed for total metal concentrations using acid extraction. The roadside sediments are characterized by very high concentrations of Zn (2,665.0$\pm$1,815.0 $\mu\textrm{g}$/g), Cu (445.6$\pm$708.0 $\mu\textrm{g}$/g), Pb (214.3$\pm$147.9 $\mu\textrm{g}$/g) and Cr (182.1$\pm$268.8 $\mu\textrm{g}$/g), indicating an artificial accumulation of these metals to the sediment chemistry. Comparing with average contents of uncontaminated stream sediments, roadside sediments were shown zinc 14 times (up to 64.4), copper 9 times (up to 181.7), lead 6 times (up to 63.7), cobalt 6 times (up to 168.7), nickel 4 times (up to 98.4), cadmium 2 times (up to 12.8) and chrome 2 times (up to 40.2) high content. The relative degree of heavy metal pollution for roadside sediments collected from each district in Seoul City is evaluated using the “geoaccumulation index”. As a result, heavy-metal contamination is highest centering the oldest residential district and industry area, and contamination level decreases as go to outer block of the city. The factor analysis results indicate that the levels of Cu, Ni, Fe and Cr are strongly related to numbers of factories, whereas the concentrations of Cr, Zn and Cd dependant on pollution index, indicating artificial contamination due to site-specific traffic density.

주요산업활동 유형에 따른 서울시 도로변 하수퇴적물의 중금속오염 특성 (The effect of land use characteristics on heavy metal contaminations of sediments from some gullypot catchments in Seoul)

  • 이평구;최상훈;김성환;윤성택
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2000년도 창립총회 및 춘계학술발표회
    • /
    • pp.28-32
    • /
    • 2000
  • There are many different chemical pollutants that originate from atmospheric deposition and transportational activities along roads. This paper review the characteristics of heavy metal pollution, relationships between land use and pollutant load in urban area. Four land use areas in Seoul were selected for sampling and study with different characteristics during the period from April 1998 and February 2000. A series of studies have been carried out concerning the physicochemical characteristics of the sediments settling down in a gully pot to evaluate the contamination for heavy metals. The sediment samples from gully pots were characterized by the chemical extraction experiments. Sediments are characterized by very high concentrations of heavy metals, probably because of a long-term accumulation of vehicle- and industrial-related pollutants. The characteristics of heavy metal pollution show that each land use has different sources of contaminations. Mean Zn concentration in Yeouido and Junggu areas is 2-3 times higher than those in Dobonggu area. This suggests that Zn may be derived from the source of automobile traffic. The mean concentrations of Cu and Cr are very significantly high in Junggu and Gurogu areas and indicate that the industrial activities may contribute to the accumulation of Cu and Cr in sediments. The low Pb levels throughout the whole study areas in Seoul can be accounted for the use of unleaded gasoline since 1987.

  • PDF

서울시 도로변의 빗물받이에서 체취한 하수슬러지의 중금속 오염 평가 (The Assesment of Heavy metal Pollution in Sewage Sludeges from Gully Pots Alongside Some Main Roads in Seoul, Korea)

  • 이평구
    • 자원환경지질
    • /
    • 제32권6호
    • /
    • pp.633-644
    • /
    • 1999
  • Gully pot is a part of urban darainage system to butter the runoff water fluxes from road to rivers and to minimize environmental pollution by prevending over the surrounding area. A series of studies have been carried out concerning the physicochemical characteristics of the sewage sludge sediments sttling down in such a gully pot in order to over to evaluate the contamination for heavy metals such as pb, Zn, Cu and Cd. The roadside soil and sewage sludge samples from gully pots were characterized by XRD analyses and sequential extraction : Zn 2595.7$\mu$g/g; Cd9.8$\mu$/g; Cu602.5$\mu$g/g; Pb260.0$\mu$g/g),because of a long-term accumulation of vehicle- and industrial-related pollutants. Mean Zn concentration in Yeouido (3873$\mu$g/g) and Junggu(3262$\mu$g/g)areas are 4-5 times higher than those in Dobonggu area, suggesting that Zn may be derived from automobile traffic (including the rubber of automobile tires). The mean concentrations of Cu and Cr are very significantly high in Junggu and Gurogu areas, possibly due to the industrial activities in these areas. The low Pb levels throughtotut the whole study areas in Seoul can be accounted for the use of unleaded gasoline since 1987. Sequential extraction experiments illustrate that a major part of Zn is bound to FII and FIII, representing about 88% of the total Zn concentration. Fraction IV, related to orgnic matter, is mostly significant for Cu accounting for 60% of the total Cu, and FII is next in importance. The main carriers of Pb are the fractions III, II and FIV, and in that order. The behavior of Cd is quite different from other elements (Zn, Cu, Pb), and most of the Cd is associated with FV. Changes in the physicochemical environments (such as acidification) may result in severe environmental pollution of surface water and rivers with respect to heavy metals (especially Zn and Cu).

  • PDF