• Title/Summary/Keyword: growth season

Search Result 1,347, Processing Time 0.027 seconds

Effects of Growth and Cellular Tissue under Abnormal Climate Condition in Chinese Cabbage (이상기상 조건이 배추의 생육 및 세포조직에 미치는 영향)

  • Lee, Sang Gyu;Choi, Chang Sun;Choi, Jun Myung;Lee, Hee Ju;Park, Suhyoung;Do, Kyung Ran
    • Journal of Bio-Environment Control
    • /
    • v.22 no.2
    • /
    • pp.87-90
    • /
    • 2013
  • The average annual and winter ambient air temperatures in Korea have risen by $0.7^{\circ}C$ and $1.4^{\circ}C$, respectively, during the last 30 years. Due to climate change, the occurrence of abnormal weather conditions has become more frequent, causing damage to vegetable crops grown in Korea. Hot pepper, chinese cabbage and radish, the three most popular vegetables in Korea, are produced more in the field than in the greenhouse. It has been a trend that the time for field transplanting of seedlings is getting earlier and earlier as the spring temperatures keep rising. Seedlings transplanted too early in the spring take a longer time to resume the normal growth, because they are exposed to suboptimal temperature conditions. This experiment was carried out to figure out the change of cellular tissue of chinese cabbage under the condition of low temperature to provide the information regarding the coming climatic change, on the performance of 'Chunkwang' chinese cabbage during the spring growing season. In our study, plant height, number of leaf, chlorophyll and leaf area was lower at the open field cultivation than heating house treatment after transplanting 50 days. Especially in fresh weight, compared with heating treatment, open field and not heated treatment were notably low with the 1/3 level. Of damage symptoms due to low temperature cabbage leaves about 10 sheets when $-3.0^{\circ}C$ conditions in chinese cabbage was a little bit of water soaking symptoms on the leaves. $-7.4^{\circ}C$ under increasingly severe water soaking symptoms of leaf turns yellow was dry. Microscopy results showed symptoms of $-3.0^{\circ}C$ when the mesophyll cell of palisade tissue and spongy tissue collapse, $-7.4^{\circ}C$ palisade tissue and spongy tissue was completely collapsed. The result of this study suggests that the growers should be cautioned not to transplant their chinese cabbage seedlings too early into the field, and should be re-transplanting or transplanting other plants if chinese cabbage are exposed to suboptimal temperature conditions ($-3.0^{\circ}C$ or $-7.4^{\circ}C$).

Effect of the Elevated Temperature on the Growth and Physiological Responses of Peach 'Mihong' (Prunus persica) (온도 상승처리가 복숭아 '미홍'의 수체생육 및 생리반응에 미치는 영향)

  • Lee, Seul Ki;Cho, Jung Gun;Jeong, Jae Hoon;Ryu, Suhyun;Han, Jeom Hwa;Do, Gyung-Ran
    • Journal of Bio-Environment Control
    • /
    • v.29 no.4
    • /
    • pp.373-380
    • /
    • 2020
  • This study was conducted to investigate the effect of elevated temperatures on the growth and physiological responses of peach 'Mihong' (Prunus persica). We simulated three different temperature conditions in the sunlight phytotron rooms from April 25 to July 5, 2019; Control (average temperature in normal years in Jeonju city), +3.4℃ treatment (expecting temperature in mid-21st century), +5.7℃ treatment (expecting temperature in late 21st century). The shoot numbers and lengths were increased while the temperature was increased, but the leaf areas were not statistically different. The harvest dates were July 1, June 24 and 21 at the control, +3.4℃, and +5.7℃, respectively. The fruit weights were increased at +3.4℃ but decreased at +5.7℃ compared to the control. The tree yield was the highest in the +3.4℃ (2,898g), followed by the control (2,746g) and the +5.7℃ (2,404g). These are related to the result that the average of maximum photosynthesis rate at 3.4℃ (14.93μmol·CO2·m-2·s-1) was higher than those at the control (13.79μmol·CO2·m-2·s-1) and +5.7℃ (13.20μmol·CO2·m-2·s-1) from mid-May to early June, the fruit growing season. Also, the stomatal densities were higher at the +3.4℃ (229ea/㎟), compared to the control (181ea/㎟). The rate of floral bud differentiation affecting the yield in the following year was the lowest at the +5.7℃. These results suggest that a temperature elevated to 3.4℃ in the future may give a positive effect on the yield and quality of peach 'Mihong' while a temperature elevated above 5.7℃ may affect negatively.

Studies on the grassland Development in the Forest IV. Possibility of the grassland improvement by spring sowing and microenvironmental conditions in the forest (임간초지 개발에 관한 연구 IV. 임간지에서 춘파초지개량 가능성과 주요 미기상 조사)

  • Park, M.S.;Han, Y.C.;Seo, S.;Lee, B.S.
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.6 no.1
    • /
    • pp.31-37
    • /
    • 1986
  • In order to study the possibility of grassland improvement by spring sowing in the forest, microenvironmental conditions, emergence, percentage of grasses and weeds, root weight and dry matter yield of grasses were investigated. Two field sites (forest grassland and full-sunlight grassland) and two sowing times (March 20 and April 10) were assigned. The condition of the forest grassland was area of pine trees with 50% shading, and the experiment was performed at the Livestock Experiment Station in Suweon, 1984. The results obtained are summarized as follows: 1. For germination and early growth of grasses, full-sunlight grassland was more advantageous than forest grassland. Growth after that stage, on the other hand, forest grassland was more suitable. Especially, during dry and high temperature season, temperature of soil surface and underground in the forest grassland were decreased by $6-7^{\circ}C$ and $3-4^{\circ}C$ each other, compared with those of the full-sunlight grassland. Also soil moisture content was continuously higher in the forest grassland. 2. At March 20 sowing the emergence time in the full-sunlight grassland was shortened by 8 days, compared with that of the forest grassland. In case of sowing on April 10, however, there was no difference between two grassland sites. 3. Grasses grown in the forest was more prostrate and leaves from them decayed more, compared with those of the full-sunlight grassland. 4. The percentage of grasses in the forest grassland was 80 to 85 %, on the other hand, that of the full-sunlight grassland was only 15 to 20 %. And the percentage of grasses tended to be high in the plot of early sowing time. 5. Dry root weight and root length of grasses grown in the forest were inferior to those of the full-sunlight grassland (P<0.05), but there was no significant difference between two sowing times. 6. Dry matter yield of grasses was significantly higher (P<0.05) in the forest grassland than in the full-sunlight grassland, and yield was influenced by sowing time. Higher yield (4,011 kg/ha) was produced in the plot of the forest grassland with early spring sowing. 7. From above results, it is suggested that grassland improvement by spring sowing in the forest is possible, and it is desirable to sow in early spring.

  • PDF

Estimation for Red Pepper(Capsicum annum L.) Biomass by Reflectance Indices with Ground-Based Remote Sensor (지상부 원격탐사 센서의 반사율지수에 의한 고추 생체량 추정)

  • Kim, Hyun-Gu;Kang, Seong-Soo;Hong, Soon-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.2
    • /
    • pp.79-87
    • /
    • 2009
  • Pot experiments using sand culture were conducted in 2004 under greenhouse conditions to evaluate the effect of nitrogen deficiency on red pepper biomass. Nitrogen stress was imposed by implementing 6 levels (40% to 140%) of N in Hoagland's nutrient solution for red pepper. Canopy reflectance measurements were made with hand held spectral sensors including $GreenSeeker^{TM}$, $Crop\;Circle^{TM}$, and $Field\;Scout^{TM}$ Chlorophyll meter, and a spectroradiometer as well as Minolta SPAD-502 chlorophyll meter. Canopy reflectance and dry weight of red pepper were measured at five growth stages, the 30th, 40th, 50th, 80th and 120th day after planting(DAT). Dry weight of red pepper affected by nitrogen stress showed large differences between maximum and minimum values at the 120th DAT ranged from 48.2 to $196.6g\;plant^{-1}$, respectively. Several reflectance indices obtained from $GreenSeeker^{TM}$, $Crop\;Circle^{TM}$ and Spectroradiometer including chlorophyll readings were compared for evaluation of red pepper biomass. The reflectance indices such as rNDVI, aNDVI and gNDVI by the $Crop\;Circle^{TM}$ sensor showed the highest correlation coefficient with dry weight of red pepper at the 40th, 50th, and 80th DAT, respectively. Also these reflectance indices at the same growth station was closely correlated with dry weight, yield, and nitrogen uptake of red pepper at the 120th DAT, especially showing the best correlation coefficient at the 80th DAT. From these result, the aNDVI at the 80th DAT can significantly explain for dry weight of red pepper at the 120th DAT as well as for application level of nitrogen fertilizer. Consequently ground remote sensing as a non-destructive real-time assessment of plant nitrogen status was thought to be a useful tool for in season nitrogen management for red pepper providing both spatial and temporal information.

Limiting Nutrient on Phytoplankton Growth in Gwangyang Bay (광양만에서 식물플랑크톤증식의 제한영양염)

  • Lee, Jae-Seong;Jung, Rae-Hong;Kim, Soung-Soo;Go, Woo-Jin;Kim, Kui-Young;Park, Jong-Soo;Lee, Young-Sik
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.6 no.3
    • /
    • pp.201-210
    • /
    • 2001
  • Salinity, DIN, DIP, DIN/DIP and indigenous algal assay were determined to estimate the limiting nutrient for phytoplankton growth in Gwangyang Bay, South Sea of Korea. Seawater samples were collected at surface and bot-tom water in 4 November 1999 (dry season) and 2 September 2000 (after heavy rain). In 4 November 1999, the salinity, DIN, DIP and DIN/DIP were 29.92 psu, 13.59 ${\mu}M$, 3.41 ${\mu}M$ and 4.14 respectively. In 2 September 2000, These values were 24.62 psu, 27.77 ${\mu}M$, 2.82 ${\mu}M$ and 9.79 respectively. The DIN and DIP concentrations in this study were higher than Deukryang, Yeoja and Gamak Bay, South Sea of Korea. Especially, DIP concentration was 8 times high compared to Deutryang, Yeoja and Gamak Bay. The main sources of nitrogen seem to be freshwater runoff from Somjin River and industrial wastewater. But, the main sources of phosphorus seem to be industrial wastewater around Gwangyang Bay. The limiting nutrient was nitrogen at all station in 4 November 1999. The limiting nutrient was also nitrogen in 2 September 2000 in spite of heavy rain observed because of relatively much volume of phosphorus sup-plied from point sources than nitrogen. In case of below 20 psu in salinity by heavy rain, the limiting nutrient willbe shift from nitrogen to phosphorus at some area of Somjin River estuary. But the limiting nutrient will be never shift to phosphorus throughout Gwangyang Bay, eastern coast of Yeoja and Dolsan because of much volume of phosphorus runoff from point source in coastal area of Gwangyang Bay.

  • PDF

A Study on the Development of a Simulation Model for Predicting Soil Moisture Content and Scheduling Irrigation (토양수분함량 예측 및 계획관개 모의 모형 개발에 관한 연구(I))

  • 김철회;고재군
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.19 no.1
    • /
    • pp.4279-4295
    • /
    • 1977
  • Two types of model were established in order to product the soil moisture content by which information on irrigation could be obtained. Model-I was to represent the soil moisture depletion and was established based on the concept of water balance in a given soil profile. Model-II was a mathematical model derived from the analysis of soil moisture variation curves which were drawn from the observed data. In establishing the Model-I, the method and procedure to estimate parameters for the determination of the variables such as evapotranspirations, effective rainfalls, and drainage amounts were discussed. Empirical equations representing soil moisture variation curves were derived from the observed data as the Model-II. The procedure for forecasting timing and amounts of irrigation under the given soil moisture content was discussed. The established models were checked by comparing the observed data with those predicted by the model. Obtained results are summarized as follows: 1. As a water balance model of a given soil profile, the soil moisture depletion D, could be represented as the equation(2). 2. Among the various empirical formulae for potential evapotranspiration (Etp), Penman's formula was best fit to the data observed with the evaporation pans and tanks in Suweon area. High degree of positive correlation between Penman's predicted data and observed data with a large evaporation pan was confirmed. and the regression enquation was Y=0.7436X+17.2918, where Y represents evaporation rate from large evaporation pan, in mm/10days, and X represents potential evapotranspiration rate estimated by use of Penman's formula. 3. Evapotranspiration, Et, could be estimated from the potential evapotranspiration, Etp, by introducing the consumptive use coefficient, Kc, which was repre sensed by the following relationship: Kc=Kco$.$Ka+Ks‥‥‥(Eq. 6) where Kco : crop coefficient Ka : coefficient depending on the soil moisture content Ks : correction coefficient a. Crop coefficient. Kco. Crop coefficients of barley, bean, and wheat for each growth stage were found to be dependent on the crop. b. Coefficient depending on the soil moisture content, Ka. The values of Ka for clay loam, sandy loam, and loamy sand revealed a similar tendency to those of Pierce type. c. Correction coefficent, Ks. Following relationships were established to estimate Ks values: Ks=Kc-Kco$.$Ka, where Ks=0 if Kc,=Kco$.$K0$\geq$1.0, otherwise Ks=1-Kco$.$Ka 4. Effective rainfall, Re, was estimated by using following relationships : Re=D, if R-D$\geq$0, otherwise, Re=R 5. The difference between rainfall, R, and the soil moisture depletion D, was taken as drainage amount, Wd. {{{{D= SUM from { {i }=1} to n (Et-Re-I+Wd)}}}} if Wd=0, otherwise, {{{{D= SUM from { {i }=tf} to n (Et-Re-I+Wd)}}}} where tf=2∼3 days. 6. The curves and their corresponding empirical equations for the variation of soil moisture depending on the soil types, soil depths are shown on Fig. 8 (a,b.c,d). The general mathematical model on soil moisture variation depending on seasons, weather, and soil types were as follow: {{{{SMC= SUM ( { C}_{i }Exp( { - lambda }_{i } { t}_{i } )+ { Re}_{i } - { Excess}_{i } )}}}} where SMC : soil moisture content C : constant depending on an initial soil moisture content $\lambda$ : constant depending on season t : time Re : effective rainfall Excess : drainage and excess soil moisture other than drainage. The values of $\lambda$ are shown on Table 1. 7. The timing and amount of irrigation could be predicted by the equation (9-a) and (9-b,c), respectively. 8. Under the given conditions, the model for scheduling irrigation was completed. Fig. 9 show computer flow charts of the model. a. To estimate a potential evapotranspiration, Penman's equation was used if a complete observed meteorological data were available, and Jensen-Haise's equation was used if a forecasted meteorological data were available, However none of the observed or forecasted data were available, the equation (15) was used. b. As an input time data, a crop carlender was used, which was made based on the time when the growth stage of the crop shows it's maximum effective leaf coverage. 9. For the purpose of validation of the models, observed data of soil moiture content under various conditions from May, 1975 to July, 1975 were compared to the data predicted by Model-I and Model-II. Model-I shows the relative error of 4.6 to 14.3 percent which is an acceptable range of error in view of engineering purpose. Model-II shows 3 to 16.7 percent of relative error which is a little larger than the one from the Model-I. 10. Comparing two models, the followings are concluded: Model-I established on the theoretical background can predict with a satisfiable reliability far practical use provided that forecasted meteorological data are available. On the other hand, Model-II was superior to Model-I in it's simplicity, but it needs long period and wide scope of observed data to predict acceptable soil moisture content. Further studies are needed on the Model-II to make it acceptable in practical use.

  • PDF

Effect of Nursery Stage and Plug Cell Size on Growth and Yield of Waxy Corn (이식재배가 찰옥수수 생육 및 수량에 미치는 영향)

  • Kim, Sung-Kook;Jung, Tae-Wook;Lee, Yu-Yong;Song, Duk-Yong;Yu, Hong-Seob;Lee, Choon-Woo;Kim, Yee-Gi;Lee, Jae-Eun;Kwak, Chang-Gil;Jong, Seung-Keun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.55 no.1
    • /
    • pp.24-30
    • /
    • 2010
  • Comprehensive studies on seedling production and transplanting cultivation of waxy corn are necessary to fulfill the comsumer's preference for the high quality whole ear waxy corn and its year-round supply for higher price, and to escape marketing in a short period at harvest season. Two waxy corn hybrids (cv. Chalok# 1 and Chalok# 4) were used to study the effects of seeding date, nursery days and plug cell size on growth and yield of waxy corn, and to clarify the reliable transplanting date at the Experimental Field of the National Institute of Crop Science in 2007. The number of days from seeding to silking was increased as nursery days were extended, but the number of days from transplanting to silking was shortened comparing to the direct seeding. Number of days from seeding to silking was shorter by 9~12 days for Chalok# 1 than for Chalok# 4, while the number of days from seeding to silking was shorter by 12~15 days in the second cropping than in the first cropping. Culm length of transplanted waxy corns was decreased as the nursery days were extended. Culm length of seeded Chaok# 1 and Chaok# 4 were decreased by 17% and 24%, respectively, in the second cropping compared to those in the first cropping. Ear length was somewhat decreased as the nursery days were extended. Chalok# 1 in the second cropping the degree of decrease was much higher in second cropping than in first cropping of Chalok# 1. Comparing to the first cropping, number of marketable ears per 10a of Chalok# 1 decreased as high as 64%, while that of seeded Chalok# 4 decreased mere 12% in the second cropping.

Studies on Application of Organic-Compound Fertilizer on Hilly Mixed Sward I. Effect of organic-compound fertilizer application on dry matter yield and botanical composition of grass-clover mixtures (산지초지에 의한 유기질복합비료의 시용에 관한 연구 I. 유기질 복합비료의 시용이 혼파목초의 건물수량과 식생변화에 미치는 영향)

  • 박근제;이혁호;신재순;이종열
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.8 no.3
    • /
    • pp.92-98
    • /
    • 1988
  • With a purpose of finding out the effects of magnesium and boron enriched organic-compound fertilizer application on the dry matter yield, yield components and changes in the botanical composition on the hilly pasture, a field experiment was arranged with five different treatments as a randomized block design and lasted from September, 1984 to the end of growing season in 1986. The results obtained are summarized as follows : 1. As a early plant growth and development, winter hardiness, growth vigour and coverage of grasses at the plots with organic-compound fertilizer application were better comparing to single dressing. 2. Average dry matter yields for two years were shown significantly high due to increasing amount of fertilizer. This trend was same both single and organic-compound fertilizer. And dry matter yields with organic-compound fertilizer application of low (8, 693.1 kg/ha) and conventional level (12, 758.7 kg/ha) were appeared to increase by 10 and 15% than those of single dressing of Low (7, 930.6 kg/ha) and conventional level (11, 122.6 kg/ha), respectively. But it was not significant difference. 3. Dry matter yield of grasses was significantly gained by increasing amount of fertilizer. The yield of legumes at the plot without fertilization was significant higher comparing to fertilizing plots, but it was not different between low and conventional dressing levels. However, at the plots with organic-compound fertilizer application the yields of grasses were a little more increased by 8-14%, and legumes were much more gained by 26-29% than those of the same species groups with single dressing, but it was not significant between the different kinds of fertilizer in the same fertilizing level. 4. At the grassland management, the rate of legumes tended to dominate at the plot without fertilization gradually. On the other hand, the botanical compositions and the rates of grasses were much better maintained at the plots with fertilization. But the rates of legumes with organic-compound fertilizer application tended to increase a little more than those of single dressing gradually.

  • PDF

Estimation of Genetic Parameters of Body Weight by Growth Periods for Hanwoo Using Animal Model (개체모형에 의한 한우의 성장단계별 체중의 유전모수 추정)

  • Choi, J.G.;Jeon, K.J.;Lee, C.W.;Na, G.J.;Lee, C.;Kim, J.B.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.667-678
    • /
    • 2003
  • The objectives of this study were to investigate the genetic characteristics of body weight by growth periods for Hanwoo. A total of 1,736 records were used for body weight. The data for body weights were collected from 1990 to 2000 in Daekwanryong branch, National Livestock Research Institute(NLRI). Estimates of (co)variance components were obtained by derivative-free Restricted Maximum Likelihood (DF-REML). The results are summarized as follows; The means for the weights were 25.60, 79.31, 98.91, 145.40, 283.26, 392.32, 545.65kg at birth, 3, 4, 6, 12, 18, 24month postpartum, respectively. The effects of calving year-season were significant for the milk yield of cow. Heritability estimates of direct genetic effects for birth weight were 0.54(all), 0.52(female), 0.36(male) in modelⅠ, 0.45(all), 0.41(female), 0.24(male) in modelⅡ, and heritabilities estimates of direct genetic effects for 4 month(weaning) weight were 0.47(all), 0.33(female), 0.28(male) in modelⅠ, 0.38(all), 0.21(female), 0.21(male) in modelⅡ. Heritability estimates for male and female data differed from those for combined data. The estimates became smaller for the body weights at 12 month or later(0.13~0.05). The heritabilities of average daily gain were smaller than those for body weights, but showed that the similar pattern to body weights.

Effect of Root Zone Warming by Hot Water on Rhizosphere Environment and Growth of Greenhouse- grown Oriental Melon (Cucumis melo L.) (온수 지중가온이 참외의 근권환경 및 생육에 미치는 영향)

  • 신용습;이우승;도한우;배수곤;최성국
    • Journal of Bio-Environment Control
    • /
    • v.6 no.2
    • /
    • pp.103-109
    • /
    • 1997
  • This experiment was conducted to investigate the effects of root zone warming on rhizosphere temperature of Oriental melon (Cucumis melo L. var. Makuwa) in winter season. Root zone was warmed by hot water flowing through pipe set at 35cm depth from the ridge. Treatments of minimum soil temperature at 20cm depth were 17, 21, $25^{\circ}C$, and non-warmed from Jan. 18 to Apr. 18. The results are summarized as follows. 1. The cumulative soil temperature for 1 month after planting oriental melon was 441, 558, 648, and 735$^{\circ}C$ at control, 17, 21, and $25^{\circ}C$ plot, respectively. 2. As soil temperature was higher, air temperature in tunnel was higher. The lowest temperature in control plot at night was 9.5$^{\circ}C$, 11.$0^{\circ}C$ in 17$^{\circ}C$ plot, 13.5$^{\circ}C$ in 21$^{\circ}C$ plot, and 16.5$^{\circ}C$ in $25^{\circ}C$ plot, respectively. 3. The xylem exudate amount of control plot for 24 hours just after basal stem abscission was 8.1$m\ell$. It was 1.2 times higher in 17$^{\circ}C$ plot, 1.3 times higher in 21 $^{\circ}C$ plot, and 4.8 times higher in $25^{\circ}C$ plot than in control plot at 30 days after planting. The xylem exudate amount at 67 days after planting of control plot was 10.4$m\ell$, those of 17, 21, $25^{\circ}C$ plots were 1.1, 3.2, and 3.3 times as compared to control plot. 4, Early growth in leaf length, stem diameter, leaf number and leaf area for 30 days after planting were better in higher temperature plots than in control plot. Particularly, the increase of leaf area was striking in higher temperature plots. Leaf area of control plot was 279.5$\textrm{cm}^2$ for 30 days after planting, 153.4% in 17$^{\circ}C$ plot, 745.6% in 21$^{\circ}C$ plot and 879.4% in $25^{\circ}C$ plot were increased as compared to in control plot.

  • PDF