• Title/Summary/Keyword: growth period

Search Result 6,193, Processing Time 0.028 seconds

Changes in Agricultural Extension Services in Korea (한국농촌지도사업(韓國農村指導事業)의 변동(變動))

  • Fujita, Yasuki;Lee, Yong-Hwan;Kim, Sung-Soo
    • Journal of Agricultural Extension & Community Development
    • /
    • v.7 no.1
    • /
    • pp.155-166
    • /
    • 2000
  • When the marcher visited Korea in fall 1994, he was shocked to see high rise apartment buildings around the capitol region including Seoul and Suwon, resulting from rising demand of housing because of urban migration followed by second and third industrial development. After 6 years in March 2000, the researcher witnessed more apartment buildings and vinyl house complexes, one of the evidences of continued economic progress in Korea. Korea had to receive the rescue finance from International Monetary Fund (IMF) because of financial crisis in 1997. However, the sign of recovery was seen in a year, and the growth rate of Gross Domestic Products (GDP) in 1999 recorded as high as 10.7 percent. During this period, the Korean government has been working on restructuring of banks, enterprises, labour and public sectors. The major directions of government were; localization, reducing administrative manpower, limiting agricultural budgets, privatization of public enterprises, integration of agricultural organization, and easing of various regulations. Thus, the power of central government shifted to local government resulting in a power increase for city mayors and county chiefs. Agricultural extension services was one of targets of government restructuring, transferred to local governments from central government. At the same time, the number of extension offices was reduced by 64 percent, extension personnel reduced by 24 percent, and extension budgets reduced. During the process of restructuring, the basic direction of extension services was set by central Rural Development Administration Personnel management, technology development and supports were transferred to provincial Rural Development Administrations, and operational responsibilities transferred to city/county governments. Agricultural extension services at the local levels changed the name to Agricultural Technology Extension Center, established under jurisdiction of city mayor or county chief. The function of technology development works were added, at the same time reducing the number of educators for agriculture and rural life. As a result of observations of rural areas and agricultural extension services at various levels, functional responsibilities of extension were not well recognized throughout the central, provincial, and local levels. Central agricultural extension services should be more concerned about effective rural development by monitoring provincial and local level extension activities more throughly. At county level extension services, it may be desirable to add a research function to reflect local agricultural technological needs. Sometimes, adding administrative tasks for extension educators may be helpful far farmers. However, tasks such as inspection and investigation should be avoided, since it may hinder the effectiveness of extension educational activities. It appeared that major contents of the agricultural extension service in Korea were focused on saving agricultural materials, developing new agricultural technology, enhancing agricultural export, increasing production and establishing market oriented farming. However these kinds of efforts may lead to non-sustainable agriculture. It would be better to put more emphasis on sustainable agriculture in the future. Agricultural extension methods in Korea may be better classified into two approaches or functions; consultation function for advanced farmers and technology transfer or educational function for small farmers. Advanced farmers were more interested in technology and management information, while small farmers were more concerned about information for farm management directions and timely diffusion of agricultural technology information. Agricultural extension service should put more emphasis on small farmer groups and active participation of farmers in these groups. Providing information and moderate advice in selecting alternatives should be the major activities for consultation for advanced farmers, while problem solving processes may be the major educational function for small farmers. Systems such as internet and e-mail should be utilized for functions of information exchange. These activities may not be an easy task for decreased numbers of extension educators along with increased administrative tasks. It may be difficult to practice a one-to-one approach However group guidance may improve the task to a certain degree.

  • PDF

Soil Classification of Paddy Soils by Soil Taxonomy (미국신분류법(美國新分類法)에 의(依)한 답토양의 분류(分類)에 관한 연구)

  • Joo, Yeong-Hee;Shin, Yong-Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.11 no.2
    • /
    • pp.97-104
    • /
    • 1979
  • According to Soil Taxonomy which has been developed over the past 20 years in the soil conservation service of the U. S. D. A, Soils in Korea are classified. This system is well suited for the classification of the most of soils. But paddy field soils have some difficulties in classification because Soil Taxonomy states no proposals have yet been developed for classifying artificially irrigated soils. This paper discusses some problems in the application of Taxonomy and suggestes the classification of paddy field soils in Korea. Following is the summary of the paper. 1. Anthro aquic, Aquic Udipsamments : The top soils of these soils are saturated with irrigated water at some time of year and have mottles of low chroma(2 or less) more than 50cm of the soil surface. (Ex. Sadu, Geumcheon series) 2. Anthroaquic Udipsamments : These sails are like Anthroaquic, Aquic Udipsamments except for the mottles of low chroma within 50cm of the soil surface. (Ex. Baegsu series) 3. Halic Psammaquents : These soils contain enough salts as distributed in the profile that they interfere with the growth of most crop plants and located on the coastal dunes. The water table fluctuates with the tides. (Ex. Nagcheon series) 4. Anthroaquic, Aquic Udifluvents : They have some mottles that have chroma of 2 or less in more than 50cm of the surface. The upper horizon is saturated with irrigated water at sometime. (Ex. Maryeong series) 5. Anthro aquic Udifluvents : These soils are saturated with irrigated water at some time of year and have mottles of low chroma(2 or less) within 50cm of the surface soils. (Ex. Haenggog series) 6. Fluventic Haplaquepts : These soils have a content of organic carbon that decreases irregularly with depth and do not have an argillic horizon in any part of the pedon. Since ground water occur on the surface or near the surface, they are dominantly gray soils in a thick mineral regolith. (Ex Baeggu, Hagseong series) 7. Fluventic Thapto-Histic Haplaquepts : These soils have a buried organic matter layer and the upper boundary is within 1m of the surface. Other properties are same as Fluventic Haplaquepts. (Ex. Gongdeog, Seotan series) 8. Fluventic Aeric Haplaquepts : These soils have a horizon that has chroma too high for Fluventic Haplaquepts. The higher chroma is thought to indicate either a shorter period of saturation of the whole soils with water or some what deeper ground water than in the Fluventic Haplaquepts. The correlation of color with soil drainage classes is imperfect. (Ex. Mangyeong, Jeonbug series) 9. Fluventic Thapto-Histic Aeric Haplaquepts : These soils are similar to Fluventic Thapto Histic Haplaquepts except for the deeper ground water. (Ex. Bongnam series) 10. Fluventic Aeric Sulfic Haplaquepts : These soils are similar to Fluventic Aeric Haplaquepts except for the yellow mottles and low pH (<4.0) in some part between 50 and 150cm of the surface. (Ex. Deunggu series) 11. Fluventic Sulfaquepts : These soils are extremely acid and toxic to most plant. Their horizons are mostly dark gray and have yellow mottles of iron sulfate with in 50cm of the soil surface. They occur mainly in coastal marshes near the mouth of rivers. (Ex. Bongrim, Haecheog series) 12. Fluventic Aeric Sulfaquepts : They have a horizon that has chroma too high for Fluventic Sulfaquepts. Other properties are same as Fluventic Sulfaquepts. (Ex. Gimhae series) 13. Anthroaquic Fluvaquentic Eutrochrepts : These soils have mottles of low chroma in more than 50cm of the surface due to irrigated water. The base saturation is 60 percent or more in some subhroizon that is between depth of 25 and 75cm below the surface. (Ex. Jangyu, Chilgog series) 14. Anthroaquic Dystric Fluventic Eutrochrepts : These soils are similar to Anthroaquic Fluvaquentic Eutrochrepts except for the low chroma within 50cm of the surface. (Ex. Weolgog, Gyeongsan series) 15. Anthroaquic Fluventic Dystrochrepts : These soils have mottles that have chroma of 2 or less within 50cm of the soil surface due to artificial irrigation. They have lower base saturation (<60 percert) in all subhorizons between depths of 25 and 75cm below the soil surface. (Ex. Gocheon, Bigog series) 16. Anthro aquic Eutrandepts : These soils are similar to Anthroaquic Dystric Fluventic Eutrochrepts except for lower bulk density in the horizon. (Ex. Daejeong series) 17. Anthroaquic Hapludalfs : These soils' have a surface that is saturated with irrigated water at some time and have chroma of 2 or less in the matrix and higher chroma of mottles within 50cm of the surface. (Ex. Hwadong, Yongsu series) 18. Anthro aquic, Aquic Hapludalfs : These soils are similar to Anthro aquic Hapludalfs except for the matrix that has chroma 2 or less and higher chroma of mottles in more than 50cm of the surface. (Ex. Geugrag, Deogpyeong se ries)

  • PDF

Studies on the Effects of Caponization and Various Hormone Treatment on the Meat Production and Quality in Growing Chicken (닭에 있어서 거세(去勢) 및 Hormone 처리(處理)가 산육성(産肉性) 및 육질(肉質)에 미치는 영향(影響)에 관한 연구(硏究))

  • Ra, Kwang Yon
    • Korean Journal of Agricultural Science
    • /
    • v.2 no.1
    • /
    • pp.9-47
    • /
    • 1975
  • These experiments were caried out to study the effects of caponization and various hormone treatments upon meat production and improvement of meat quality of growing chicken. Sixtyseven days old 160 New Hampshire cockerels were treated and growth rate, carcass yield, change of weight of individual organs, meat composition and change of amino acid were measured and analysed. Otherwise change of testis and thyroid gland by hormone treatment were investigated histologically. The results obtained were as follows. 1. The effectst of caponization and hormone treatment upon meat production were; 1) Body weight of cockerels in D. E. S. group without caponization was increased. upon 96.86% than initial period and A. C. T. H. group was 104.22% but other groups and all carponization groups were lighter than those of control group. 2) Weekly body gain of D. E. S. group without caponization was best showing the significance (102.69 g) and the group with caponization were lower than those groups without caponization. 3) Carcass yield was best in Testo. group without caponization (831.2 g) and the group with caponization were lower than the group without caponization. 4) Carcass rate was highest in A. C. T. H. group with caponization and (67.22%) lowest in Testo. group without caponization (63.37%), but any significance was not recognized. 2. The effects of caponizatitn and hormone treatments upon the coposition of meat and amino acids were; 1) Any significance was not recognized between treated and untreated group about change of moisture, crude protein, crude ash and glycogen contents in meat. 2) Fat co tent in muscle in the all treated groups were higher than that of control group. 3) Extracts of group without caponization were higher than those of groups with caponization. 4) Lysin contents were highest in D. E. S. group with caponization (11. 12/ 16.0 g N) and generelly Testo. group was lower compared with D. E. S. group. 5) Histidine and Arginine contents were higher in the groups with caponization than without caponization. 6) Aspartic acid content were higher in D. E. S. group and A. C. T. H. group without depend on caponization. 7) Treonine content was higher in Testo. group without caponization and in the group with caponization and without hormone treatment compared with those of control group without caponization. 8) Serine content was decreased in the group with caponization and increased by D. E. S. and A. C. T. H treatment groups and glutamic acid was also decreased in Testo. group with out caponization. 9) Cystine content was decreased by Testo. treatment and was not appeared in Testo. group without caponization. 10) Valine content was lower in control group with caponization but significance was not recognized between other groups and control group without caponization. 11) Glycine, Alanine, Methionine. Isoleucine, Leucine, Thyrosine and Phenylalanine contents were not so difference between hormone treated groups and control group without caponization. 3. The effects of caponization and hormone treatment upon the change of organs were: 1) The weight of all organs were heaviest in D. E. S. group without caponization (18.5g) and lightest in A. C. T. H. group without caponization (155. 3g) but no significance was recognized between hormone treatment groups. 2) Heart weight was heaviest in D. E. S. group without caponization (7.46 g) and lightest in Testo. group without caponization (5.95 g). 3) Liver weight was heaviest in D. E. S. group without caponization(32.89g) and lightest in hormone untreated group with caponization(29.66g). Significance was not recognized. 4) Spleen weight was heaivest in Testo. group with caponization (3.22 g) and lightest in D. E. S. group without caponization(2.00g) in contrast with the other groups. High significance was recognized among the groups (P<0.01). 5) Cloacal thymus weight was lightest in D. E. S. group with or without caponization compared with control group without caponization. High significance was recognized among the groups. 6) Muscle fat content was not appeared in A. C. T. H. group with caponization, but it was highly increased in D. E. S. group with or without caponization. 7) Testis weight was lightest in D. E. S. group (0.38g) compared with control group (2.66g). Significance was recognized among the groups. 8) Large intestine, small intestine and cecum weight and length were heavier and longer in D. E. S. group without caponization and control group without caponization was lighter than those of hormone treated groups. 4. The effects of caponization and hormone treatment upon histological change of testis and thyroid gland: 1) The histological change of testis was significantly appeared in D. E. S. group that seminifirous tubles was slowly atrophied, the funtion of spernatogenesis was ceased, spermatocyte was changed as degeneration by pyknosis and karyorrhexis and interstitial cell was also atrophied, but in Testo. and A. C. T. H. group were similar as control group. 2) The histological change of thyroid gland in Testo. and A. C. T. H. groups without caponization were similar to that of control group without caponization, but in D. E. S. group without caponization, was changed squamously. Thyroid gland of the groups with caponization, epithelium of was atrophied and changed squamously as degeneration by pyknosis and karyorrhexis and the function of thyroid gland was slowly ceased in colloid and in hormone treated group with caponization.

  • PDF