• Title/Summary/Keyword: growth morphology

Search Result 1,582, Processing Time 0.019 seconds

A study on monthly changes in morphological characteristics of Ecklonia cava(Laminariales, Phaeophyceae) aquaculture population (갈조류 감태(Ecklonia cava Kjellman) 양식 개체군 형태 형질의 월 변화에 대한 고찰)

  • Seung-Oh Kim;Hyun Il Yoo;Jin Seok Heo;Si Hyun Jeon;Sang-Rae Lee;Jung Hyun Oak
    • Korean Journal of Environmental Biology
    • /
    • v.42 no.1
    • /
    • pp.80-94
    • /
    • 2024
  • This study aimed to examine the morphological characteristics and variation in main traits by comparing the growth of individuals of Ecklonia cava Kjellman(Laminariales, Phaeophyceae) under an aquaculture environment. This survey was conducted from April 2018 to November 2019 at the aquafarm in Jindo-gun, Jeollanam-do(South coast of Korea). To classify the morphology of individuals in the aquaculture farm of E. cava, we investigated fourteen morphological characteristics and calculated four ratios between the measured values. Juvenile individuals showed a simple or oblong lanceolate, and at 3-4 months, a short stipe and holdfast developed, along with a bladelet that developed into the secondary blade form. At 5-7 months, secondary blades were found to develop irregularly on the primary blade. At 8-10 months, the primary blade expanded and secondary blades elongated. At 11-12 months, the secondary blades became oblong. At 13-14 months, the thallus area expanded. At 15-16 months, tertiary blades were formed, the thallus became more complex, the stipe thickened, and the holdfast widened. At 17-18 months, secondary blades clearly developed along with lobes. At 19-20 months, tertiary blades developed and became similar to mature natural blades. In the principal component analysis (PCA), the monthly population of the first year(Q1) and that of the second year(Q2) of the cultured population were divided along PC1, which is related to secondary blade morphological characteristics and the holdfast width. Q2 and natural populations are distributed in descending order of volume in Jeju(J), East Coast(E), and South Coast(S) along PC2, which is related to primary blade and stipe morphological characteristics. The results of this study were judged to offer important criteria for the development of different varieties of E. cava.

Malacological Studies on Parafossarulus manchouricus(Gastropoda: Prosobranchia) in Korea (한국산(韓國産) 왜우렁(Parafossarulus manchouricus)의 패류학적(貝類學的) 연구(硏究))

  • Chung, Pyung-Rim
    • The Korean Journal of Malacology
    • /
    • v.1 no.1
    • /
    • pp.24-50
    • /
    • 1985
  • Five different populations of Parafossarulus manchouricus (Chongpyung, Chinju and Kunsan, Korea; and Japan and Taiwan), a population of Bitbynia (Gabbia) misella (Gongju, Korea) and two different populations of Bithynta tentaculata (Michigan, U.S.A. and Bodensee, Germany) were compared in regard to eff-laying characteristics, morphology, chromosome cytology, natural infections of parasites and ecology of habitats. A satisfactory culture method was devised for laboratory rearing of the snails. Tropical fish food (Terra SML) and powdered green leaves (Ceralife) were used as the main food sources for the snails. Benthic diatoms such as Navicula and Gomphonema from the periphyton were also essential for satisfactory growth, especially for the baby snails. The aquaria were stabilized with small stones from a local stream. Young P. manchouricus snails grew to adult size in about 54 days after hatching. They laid eggs 150-156 days after hatching. The whole cycle (birth to egg-laying) took approximately 5 months. The three species of bithyniid snails are iteroparous and lay eggs once a year. There were no major morphological differences in the shells of genera or subgenera studied here. They did exhibit the following rather minor differences. The shell of Parafossarulus has spirally raised ridges, and its apex is usually eroded; the other two genera lack these characteristics. The shell of B. (Gabbia) misella is small, nor exceeding 7.5 mm in length, while the shells of the other two species are larger, being more than 10 mm in length. Scanning electron microscopy (SEM) of the protoconch of P. manchouricus reveals nearly smooth sculpture with small, low, spiral wrinkles. This sculpture is quite different from that of the Hydrobiidae, a family to which the bithyniids are frequently assigned. Scanning electron microscopy of the radulae of the three bithyniid species showed that their radular morphologies are very similar, but there are some small differences, which may be species-specific. There were some statistical differences in shell heights between the Korean and the other populations of P. manchouricus, and between this species and the other two bithyniids as well. The shell differences between the several populations of Korean P. manchouricus may be related to environment. Edtails of the chromosome cycle of these bithyniid snails are similar to those reported for other snails. No specific differences were observed in the chromosome cycle between the various species and populations of snails employed in this study. Reporred for the first time in molluscs are two darkly stained "nucleolar organizers" during pachyterne stages of meiosis. Two different chromosome numbers were observed in the three bithyniid species: n=17 in B. tentaculata and P. manchouricus, and n=18 in B. (G.) misella. no sex chromosomes or supernumerary chromosomes were seen. There were no morphological differences in karyotypes of three Korean strains of P. manchouricus. The infection rates of cercariae of Clonorchis sinensis in Chinju and Kunsan strains of P. manchouricus were 0.14% and 1.25%, respectively. However, Clonorchis cercariae were found in Chongpyung strain of P. manchouriceu and Gongju strain of B. (G.) misella. The habitats of P. manchouricus around Jinyang Lake were relatively clean without any heavy pollution of aquatic microorganisms and organic materials during the period of this study. The levels of dissolved oxygen (D.O.) and biochemical oxygen demand (B.O.D.) of the water specimens sampled from the study areas ranged from 6.0 to 9.6 ppm and from 0.4 to 1.6 ppm, respectively. Eight metalic constituents from the water samples were also assayed, and all metalic ions detercted were remarkably low below the legal criteria. However, calcium ion in the water samples from the habitats of P. manchouricus was considerably higher than others.

  • PDF