• Title/Summary/Keyword: growth from solutions

Search Result 396, Processing Time 0.023 seconds

High performance pervaporative desalination of saline waters using Na-X zeolite membrane

  • Malekpour, Akbar;Nasiri, Hamed
    • Membrane and Water Treatment
    • /
    • v.8 no.5
    • /
    • pp.437-448
    • /
    • 2017
  • A high quality Na-X zeolite membrane was synthesized on a seeded ${\alpha}-alumina$ disc by the secondary growth method. Structural characterization was done by X-ray spectroscopy, FT-IR spectroscopy, SEM and AFM imaging. The performance evaluation of the membrane was firstly tested in separation of glucose/water solutions by pervaporation process. There was obtained a separation factor $182.7{\pm}8.8$, while the flux through the membrane was $3.6{\pm}0.3kg\;m^{-2}\;h^{-1}$. The zeolite membrane was then used for desalination of aqueous solutions consisting of $Na^+$, $Ca^{2+}$, $Cs^+$ and $Sr^{2+}$ because of the importance of these ions in water and wastewater treatments. The effects of some parameters such as temperature and solution concentration on the desalination process were studied for investigating of diffusion/adsorption mechanism in membrane separation. Finally, high water fluxes ranged from 2 up to $9kg\;m^{-2}\;h^{-1}$ were obtained and the rejection factors were resulted more than 95% for $Na^+$ and $Ca^{2+}$ and near to 99% for $Cs^+$ and $Sr^{2+}$. Based on the results, fluxes were significantly improved due to convenient passage of water molecules from large pores of NaX, while the fouling was declining dramatically. Based on the results, NaX zeolite can efficiently use for the removal of different cations from wastewaters.

Growth and Quality of Baby Leaf Vegetables Hydroponically Grown in Plant Factory as Affected by Composition of Nutrient Solution (양액 조성이 식물공장 재배 어린잎채소의 생육 및 품질에 미치는 영향)

  • Kwack, Yurina;Kim, Dong Sub;Chun, Changhoo
    • Journal of Bio-Environment Control
    • /
    • v.24 no.4
    • /
    • pp.271-274
    • /
    • 2015
  • The objective of this study was to investigate the effects of composition of nutrient solution on the growth and quality of baby leaf vegetables (tat soi, romaine lettuce, beet, and red radish) hydroponically cultivated in plant factory. The seeds of four vegetable crops were sown in urethane sponges and cultivated for 14 days in a plant factory. Light intensity and photoperiod were $110{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ and 16 h, respectively; and air temperature in photo/darkperiod was maintained at $25/20^{\circ}C$. Tap water was used for irrigation for 7 days after sowing, and then plants were irrigated for 7 days using tap water and the nutrient solutions of Korea Wonshi, Japan Enshi, and Yamazaki for lettuce. At 14 days after sowing, the fresh weight of tah soi was highest in the nutrient solution of Yamazaki for lettuce, and there were no significant differences among nutrient solutions in beet and red radish. When we compared leaf color using Hunter's a value, the nutrient solution of Korea Wonshi and Japan Enshi increased green color in baby leaf vegetables, while the nutrient solution of Yamazaki for lettuce increased red color. Total phenolic content of romaine lettuce was highest in the nutrient solution of Korea Wonshi, but tat soi, beet, and red radish showed no significant differences among nutrient solutions in total phenolic contents. From these results, we suggest that using the nutrient solution of Korea Wonshi can enhance the growth and quality of romaine lettuce and the nutrient solution of Yamazaki for lettuce is appropriate for enhancing the growth and red color of beet and red radish in plant factory.

Artificial Intelligent Clothing Embedded Digital Technologies

  • Lim, Ho-Sun;Lee, Duck-Weon;Shim, Woo-Sub
    • Journal of Fashion Business
    • /
    • v.14 no.6
    • /
    • pp.70-83
    • /
    • 2010
  • With the rapid development of science and technology and the increased preference by consumers for high-function products, many products are being developed through the fusion of technologies in different industries. Among such fusion technologies, digital clothing which combines clothing with computer functions is being examined as a new growth item. The objectives of this study are to examine the concept, history, development, and market of intelligent clothing, in order to discuss future directions for the development of digital clothing technology. intelligent clothing (wearable computers) originated in the 1960s from the concept of separating computing equipment and attaching it to the body. This technology was studied intensively from the early 1980s and to the early 1990s. In the late 1990s, studies on wearable computers began to develop intelligent/digital clothing that was more comfortable and beneficial to users. Depending on the user and purpose, intelligent/digital clothing is now being developed and used in diverse industrial areas that include sports, medicine, military, entertainment, daily life, and business. Many experts forecast a huge growth potential for the digital textile/clothing market, and predict the fastest market growth in the field of healthcare/medicine. There exists a need to find solutions for many related technological, economic, and social issues for the steady dissemination and advancement of intelligent/digital clothing in various industries. Further, research should be continued on effective fusion technologies that reflect human sensitivity and that increase user convenience and benefits.

Increases in the Activities of Microsomal ATPases Prepared from the Roots of Lettuce Cultured in Salt-enhanced Nutrient Solutions (양액내 염류농도 증가에 의한 상추뿌리의 마이크로솜 ATPase 활성증가)

  • Lee, Gyeong-Ja;Kang, Bo-Koo;Kim, Young-Kee
    • Korean Journal of Environmental Agriculture
    • /
    • v.21 no.2
    • /
    • pp.102-108
    • /
    • 2002
  • In order to investigate the mechanism of growth inhibition by salt stress, lettuces were grown hydroponically in three different nutrient solutions, normal and 30 mM or 50 mM $KNO_3$-added nutrient solutions, and the electrical conductivities of these solutions were 1.0, 4.5, and 6.5 dS/m, respectively. The activities of plasma and vacuolar $H^+$-ATPases in the root tissue of lettuce were measured by specific inhibitors, 100 ${\mu}M$ vanadate and 50 mM $NO_3^-$, respectively. Microsomal ATPase activity of lettuce grown in the normal nutrient solution was $356\pm1.5$ nmol/min/mg protein. When lettuces were grown in 30 mM and 50 mM $KNO_3$-added nutrient solutions, total activities of microsomal ATPases were increased by 1.6 and 1.9 times, respectively, and the increases were mainly mediated by vacuolar $H^+$-ATPase. These results show that lettuces adapt themselves to salt-stressed condition by increasing the activities of $H^+$-ATPases. Effects of various heavy metal ions were investigated on the microsomal ATPases and various metal ions at 100 $\mu M$ inhibited the activities by 10$\sim$25%. $Cu^{2+}$ showed the highest inhibitory effect on the vacuolar $H^+$-ATPase. These results suggest that lettuce increases the activities of root ATPases, specially that of vacuolar $H^+$-ATPase, in salt-stressed growth conditions and $Cu^{2+}$ could be a useful tool to control the activity of vacuolar $H^+$-ATPase.

Optimization of Growth Environments Based on Meteorological and Environmental Sensor Data (기상 및 환경 센서 데이터 기반 생육 환경 최적화 연구)

  • Sook Lye Jeon;Jinheung Lee;Sung Eok Kim;Jeonghwan Park
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.230-236
    • /
    • 2024
  • This study aimed to analyze the environmental factors affecting tomato growth by examining the correlation between weather and growth environment sensor data from P Smart Farm located in Gwangseok-myeon, Nonsan-si, Chungcheongnam-do. Key environmental variables such as the temperature, humidity, sunlight hours, solar radiation, and daily light integral (DLI) significantly affect tomato growth. The optimal temperature and DLI conditions play crucial roles in enhancing tomato growth and the photosynthetic efficiency. In this study, we developed a model to correct and predict the time-series variations in internal environmental sensor data using external weather sensor data. A linear regression analysis model was employed to estimate the external temperature variations and internal DLI values of P Smart Farm. Then, regression equations were derived based on these data. The analysis verified that the estimated variations in external temperature and internal DLI are explained effectively by the regression models. In this research, we analyzed and monitored smart-farm growth environment data based on weather sensor data. Thereby, we obtained an optimized model for the temperature and light conditions crucial for tomato growth. Additionally, the study emphasizes the importance of sensor-based data analysis in dynamically adjusting the tomato growth environment according to the variations in weather and growth conditions. The observations of this study indicate that analytical solutions using public weather data can provide data-driven operational experiences and productivity improvements for small- and medium-sized facility farms that cannot afford expensive sensors.

Adsorption properties and metal growth aspects on the surface of activated carbon monolith electrochemically deposited with Ag

  • Oh, Won-Chun;Lim, Chang-Sung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.2
    • /
    • pp.37-46
    • /
    • 2004
  • The electrochemical adsorption of the Ag ions from aqueous solution on pelletized activated carbon monolith was investigated over wide range of operation time. The adsorption capacities of pelletized activated carbon monolith are associated with their internal porosity and are related properties such as surface area, pore size distribution. The chemical industry generates wastewater that contains toxic matters like heavy metals in small concentrations so that their economic recovery is not feasible. But, the method using activated carbon monolith can be used to withdrawal of heavy metals in waste water. After the electrochemical treatment, the quantitative properties in Ag ion solutions are also examined by pH concentration and studied elemental analysis by ICP-Atomic Emission Spectrometer and Energy Disperse X-ray (EDX) spectra. It is consider that the pH is very important factor at the reason of water pollutant with increasing acidity in industrial field. The result of quantitative analysis using Inductively Coupled Plasma-Atomic Emission Spectrometer of metal after electrochemical reaction in Ag ions solution depending on time are shown that the amount of Ag ions deposited was decreased with growth of Ag particles on the carbon surfaces as increasing electrochemically treated time. And, surface morphologies are investigated by scanning electron microscopy (SEM) to explain the changes in adsorption properties.

Empirical Study on Digital Core-Banking System

  • Kang, Hee Yong;Weon, Dal Soo
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.9 no.2
    • /
    • pp.48-57
    • /
    • 2017
  • In the last few years, banks have experienced more challenging market than any other times. They need to find new ways to reconnect with their customers and rebuild their trust. But in the race to the future some banks are taking clear lead. Research works show that while high perform leading banks are different, they also share some common characteristics and principles that have allowed them to move ahead to profitable growth. Cost cutting is no longer enough to succeed in tomorrow's world. Instead, the IT function needs to work shoulder-to-shoulder with the business to support the growth agenda. Therefore "C" level's attention is moving from cost reduction towards customer experience, speeding to market for new offerings, analytics and distribution channel enhancements, taking advantage of several levers that will shape the technology agenda for the high performing organization. Next generation of digital core-banking solutions will improve pre-existing capabilities, introduce new innovations and drive qualities such as flexibility and scalability to support time to market.

Problems and Possible Solutions about Feed Fungi and Mycotoxins (사료 중의 곰팡이와 곰팡이 독소에 대한 문제점과 가능한 대책)

  • 남기홍
    • Korean Journal of Poultry Science
    • /
    • v.21 no.2
    • /
    • pp.113-117
    • /
    • 1994
  • Of the 200, 000 known species of molds, only 50 or 60 are known to be harmful to humans or livestock. Certain fungi that grow on grains and grasses can produce chemical substances called mycotoxins that adversely affect performance in poultry. There are several methods of preserving feed ingredients. The list includes: drying, antioxidants, mold inhibitors, organic acids, phosphates, cooking or toasting, fat extraction, blending and fermenting. Mold inhibitors are manufactured to inhibit mold growth and prevent the production of toxic substances. They are fungistats and not fungicides, that is, they only stop the growth of molds. Practical and cost-effective methods to detoxify mycotoxin containing feedstuffs are in great demand. 0.5% hydrated sodium calcium aluminosilicate added to the diet protected chicks from the deleterious effects of aflatoxin-contaminated feed. The dietary addition of antioxidants and methionine also significantly diminished the negative effects on body weight in chicks toxicated with 3.0 ppm aflatoxin B1.

  • PDF

Shapes of ZnO Nanostructures Grown in the Aqueous Solutions (수용액에서 합성한 ZnO 나노구조체의 형상)

  • Jang Yeon-Ik;Park Hoon;Lee Seung-Yong;Ahn Jae-Pyoung;Park Jong-Ku
    • Journal of Powder Materials
    • /
    • v.12 no.4 s.51
    • /
    • pp.284-290
    • /
    • 2005
  • ZnO nanostructures with various shapes were synthesized under ambient pressure condition by a wet chemical reaction method. Nanorods of ZnO with hexagonal cross-section and their aggregates with radiate shape were synthesized. Precursor concentration affected considerably the shape evolution of ZnO nanorods. Low precursor concentration was proved to be more preferable to the growth of ZnO nanorods, which is attributed to the intrinsic characteristics of chemical reaction in the synthesis of ZnO from zinc compounds.

R&D Trends of Intelligent Robotics on the Roadmap (국내외 기술로드맵을 통해 본 지능형로봇 기술개발의 동향)

  • Park, Hyun-Sub;Koh, Kyoung-Chul;Kim, Hong-Suck;Lee, Ho-Gil
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.1
    • /
    • pp.103-108
    • /
    • 2007
  • Intelligent Robot is considered as one of the Next Generation Growth Engine in many countries. The application fields are expected to be widen from 80's robotics for manufacturing to many applications such as military, space, medical, personal, etc. To reduce the R&D investment risk Technical Roadmap is prepared by Japan, Europe and Korea. In this paper, the technical Roadmap of the countries was analysed to get the idea of future of Robotics. Robotics is considered as one of solutions of future aged society. Robot can assist and company with elderly people in the near future. On the other hand, Robot is considered as a core technology of manufacturing competitive power. Industrial competitiveness also would be dependent on robot technology. Special Service robot has many application areas and each country has different target based on the situation. With the comparison of technical roadmap, we have suggested some ideas to improve Korea's roadmap.

  • PDF