• Title/Summary/Keyword: growth behavior

검색결과 2,667건 처리시간 0.031초

Grain Growth Behavior of (K0.5Na0.5)NbO3 Ceramics Doped with Alkaline Earth Metal Ions

  • Il-Ryeol Yoo;Seong-Hui Choi;Kyung-Hoon Cho
    • 한국재료학회지
    • /
    • 제33권4호
    • /
    • pp.135-141
    • /
    • 2023
  • The volatilization of alkali ions in (K,Na)NbO3 (KNN) ceramics was inhibited by doping them with alkaline earth metal ions. In addition, the grain growth behavior changed significantly as the sintering duration (ts) increased. At 1,100 ℃, the volatilization of alkali ions in KNN ceramics was more suppressed when doped with alkaline earth metal ions with smaller ionic size. A Ca2+-doped KNN specimen with the least alkali ion volatilization exhibited a microstructure in which grain growth was completely suppressed, even under long-term sintering for ts = 30 h. The grain growth in Sr2+-doped and Ba2+-doped KNN specimens was suppressed until ts = 10 h. However, at ts = 30 h, a heterogeneous microstructure with abnormal grains and small-sized matrix grains was observed. The size and number of abnormal grains and size distribution of matrix grains were considerably different between the Sr2+-doped and Ba2+-doped specimens. This microstructural diversity in KNN ceramics could be explained in terms of the crystal growth driving force required for two-dimensional nucleation, which was directly related to the number of vacancies in the material.

계면처리와 스타칭이 복합적층판의 파괴거동에 미치는 영향 연구 (Study on the Effects of Surface Treatment and Stitching on the Fracture Behavior of Composite Laminates)

  • 홍순영;황운봉;박현철;한경섭
    • 대한기계학회논문집A
    • /
    • 제20권3호
    • /
    • pp.806-815
    • /
    • 1996
  • The interlaminar fracture behavior of woven laminates under static and cyclic loadings has been studied using DCB(double cantilever beam) specimens. The effects of surface treatment and stiching on the fracture behavior of composite laminates are investigated experimentally. Fracture toughness has been improved by surface treatment because the surface treatment can change the fracture mechanism of laminates. SCB(stitched cantilever beam) model has been proposed to quantify the effect of through-thickness resinforcement(stiching) in improving the delamination crack growth resistance. Distributed loads which are transfered to through-thickness fibers can be calculated by the SCB model. And fracture energy increase due to the distributed load can be predicted by a power function of the distributed load. A new parameter agreed well proposed predict fatigue crack growth rate. The predictions using this parameter agreed well with the experimental data.

Butt 용접부에서 잔류응력이 피로균열성장거동에 미치는 영향에 대한 실험적 연구 1

  • 최용식;김영진;우흥식
    • Journal of Welding and Joining
    • /
    • 제6권4호
    • /
    • pp.27-34
    • /
    • 1988
  • The objective of this paper is to investigate the effect of residual stress on fatigue crack growth behavior. For this purpose, submerged arc welding was performed on SM50A steel plate and post weld heta treatment (PWHT) was followed. Residual stress distribution on the weld plate was determined by a hole drilling method and a series of .DELTA.P-const. and .DELTA.K-decreasing fatigue test were performed on the three different regions, i.e. weld metal, HAZ and base metla. Following conclusins were achieved. 1. In "as welded" specimens, tensile residual stresses were produced in the center portion of the specimen while compressive residual stresses were produced near the edges. In PWHT specimens, however, most of the residual stresses were disappeared. 2. The fatigue crack growth behavior in low .DELTA.K region was considerably affected by the presence of residual stress in both "as welded" and PWHT specimens. 3. Because of the relaxation of residual stresses in PWHT condition, the values of m increased from 2.62-2.78 (in the "as welded" condition) to 3.57-3.91 (in the "PWHT" condition)3.91 (in the "PWHT" condition)condition)

  • PDF

탄화붕소 소결 거동 연구를 위한 율속제어소결의 적용 (Application of rate-controlled sintering into the study of sintering behavior of boron carbide)

  • 이혁재
    • 한국결정성장학회지
    • /
    • 제25권1호
    • /
    • pp.6-12
    • /
    • 2015
  • 율속제어소결은 소결 공정 중 실시간으로 측정되는 시편의 팽창/수축거동을 이용해 일정한 수축거동을 하도록 로의 파워를 조정하는 소결방법으로, 온도를 조절하기 위해 로의 파워를 제어하는 일반적인 소결에 비해 시편의 소결 과정을 세밀히 제어할 수 있으며, 특히 소결공정의 최적화를 이룰 수 있는 장점이 있다. 본 연구에서는 탄화붕소의 소결에 율속 제어소결을 적용해 각 공정변수의 조절에 따른 소결온도 및 입자성장의 변화를 조사하여 그 상관관계를 규명하고 이를 기존의 이론에 맞추어 해석함으로써 율속제어소결을 어떻게 소결공정 최적화에 이용할 수 있는지 그 가능성을 알아보았으며 이를 통해 향후 미지 소재의 소결공정에 율속제어공정을 어떻게 적용할 수 있는지 고찰해 보았다.

항암화학요법을 받는 부인암 환자의 외상 후 성장 영향 요인 (Factors Influencing Posttraumatic Growth of Gynecologic Oncology Patients Undergoing Chemotherapy)

  • 윤선정;김혜영
    • 여성건강간호학회지
    • /
    • 제25권4호
    • /
    • pp.409-422
    • /
    • 2019
  • Purpose: The purpose of this study was to investigate the factors impacting the posttraumatic growth (PTG) factors during chemotherapy in gynecologic oncology patients. Method: The data were collected at six hospitals at a university hospital, general hospital, women's hospital, and 3 oncology hospitals in D metropolitan city. The participants of the study were 135 female patients undergoing chemotherapy for their gynecologic oncology. To identify the factors that influence PTG, we used the questionnaires for the family support, sexual distress, health promoting behavior, and PTG. Results: There was a significant positive correlation between family support and health promoting behavior and PTG. There was significant negative correlation between sexual distress and PTG. Factors impacting the PTG of gynecologic oncology women undergoing chemotherapy were age, recurrence, family support, sexual distress, and health promoting behavior. These factors accounted for 47.0% of PTG. Conclusion: It is necessary to develop and apply programs that include sexual distress management education, and health promotion with families. PTG programs for gynecologic oncology patients undergoing chemotherapy should be approached considering these results.

Creep and creep crack growth behaviors for base, weld, and heat affected zone in a grade 91 weldment

  • Kim, Woo-Gon;Sah, Injin;Kim, Seon-Jin;Lee, Hyeong-Yeon;Kim, Eung-Seon
    • Nuclear Engineering and Technology
    • /
    • 제53권2호
    • /
    • pp.572-582
    • /
    • 2021
  • This study investigated the creep and creep crack growth (CCG) behavior of the base metal (BM), weld metal (WM), and heat affected zone (HAZ) in a Gr. 91 weldment, which was made by a shield metal arc weld process. A series of tensile, creep, and CCG tests were performed for the BM, WM, and HAZ at 550 ℃. Creep behavior of the BM, WM, and HAZ was analyzed in terms of various creep laws; Norton's power-law, Monkman-Grant relation and damage tolerance factor (λ), and their constants were determined. In addition, each CCGR law for the BM, WM, and HAZ was proposed and compared in terms of a C*-fracture parameter. The WM and HAZ revealed faster creep rate, lower rupture ductility, and faster CCGRs than the BM, but they showed a similar behavior in the creep and CCG. The CCGRs obtained in the present study exhibited a marginal difference when compared with those of RCC-MRx of currently elevated design code in France. A creep crack path in the HAZ plane progressed towards a weak fine-grained HAZ adjacent to the BM.

Bank Capital and Lending Behavior of Vietnamese Commercial Banks

  • DANG, Van Dan;LE, Thi Tuyet Hoa;LE, Dinh Hac;NGUYEN, Hoang Dieu Hien
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제8권2호
    • /
    • pp.373-385
    • /
    • 2021
  • The objective of the study is to empirically investigate the impact of bank capital on the lending behavior of Vietnamese commercial banks from 2007 to 2019. Lending behavior is captured by two dimensions, including the quantity (loan growth) and quality (credit risk) of loans. Instead of investigating loan growth and credit risk separately, we combine these two aspects in our study and further develop the interaction term between capital buffers and credit risk to capture the asymmetric impact. We apply the dynamic model (regressed by the generalized method of moments) and the static models (regressed using the fixed effects, random effects, and the pooled regression approach) to perform regressions. The results show that banks with higher capital ratios tend to expand lending more, while the risk of credit portfolios is controlled at lower levels at these banks. Further analysis reveals that credit risk mitigates some aspects of the relationship between bank capital and loan expansion. The patterns remain robust across alternative measures and econometric techniques. The study provides insightful policy implications for bank managers and regulators in the process of upgrading capital resources to ensure the safety and soundness of the banking industry in an emerging country.

Influence of nano-silica on the failure mechanism of concrete specimens

  • Nazerigivi, Amin;Nejati, Hamid Reza;Ghazvinian, Abdolhadi;Najigivi, Alireza
    • Computers and Concrete
    • /
    • 제19권4호
    • /
    • pp.429-434
    • /
    • 2017
  • Failure of basic structures material is usually accompanied by expansion of interior cracks due to stress concentration at the cracks tip. This phenomenon shows the importance of examination of the failure behavior of concrete structures. To this end, 4 types of mortar samples with different amounts of nano-silica (0%, 0.5%, 1%, and 1.5%) were made to prepare twelve $50{\times}50{\times}50mm$ cubic samples. The goal of this study was to describe the failure and micro-crack growth behavior of the cement mortars in presence of nano-silica particles and control mortars during different curing days. Failure of mortar samples under compressive strength were sensed with acoustic emission technique (AET) at different curing days. It was concluded that the addition of nano-silica particles could modify failure and micro-crack growth behavior of mortar samples. Also, monitoring of acoustic emission parameters exposed differences in failure behavior due to the addition of the nanoparticles. Mortar samples of nano-silica particles revealed stronger shear mode characteristics than those without nanoparticles, which revealed high acoustic activity due to heterogeneous matrix. It is worth mentioning that the highest compressive strength for 3 and 7 test ages obtained from samples with the addition of 1.5% nano-silica particles. On the other hand maximum compressive strength of 28 curing days obtained from samples with 1% combination of nano-silica particles.

원공노치 인근에 발생한 결함의 위치변화가 균열성장률(da/dN) 및 응력확대계수범위(δK)의 관계에 미치는 영향 - 단일재 알루미늄과 Al/GFRP 적층재의 피로거동 비교 - (The Effect of Defect Location Near a Circular Hole Notch on the Relationship Between Crack Growth Rate (da/dN) and Stress Intensity Factor Range (δK) - Comparative Studies of Fatigue Behavior in the Case of Monolithic Al Alloy vs. Al/GFRP Laminate -)

  • 김철웅;고영호;이건복
    • 대한기계학회논문집A
    • /
    • 제31권3호
    • /
    • pp.344-354
    • /
    • 2007
  • The objective of this study is to investigate the effect of arbitrarily located defect around the circular hole in the aircraft structural material such as Al/GFRP laminates and monolithic Al alloy sheet under cyclic bending moment. The fatigue behavior of these materials may be different due to the defect location. Material flaws in the from of pre-existing defects can severely affect the fatigue crack initiation and propagation behavior. The aim of this study is to evaluate effects of relative location of defects around the circular hole in monolithic Al alloy and Al/GFRP laminates under cyclic bending moment. The fatigue behavior i.e., the stress concentration factor($K_t$), the crack initiation life($N_i$), the relationship between crack length(a) and cycles(N), the relationship between crack growth rate(da/dN) and stress intensity factor range(${\Dalta}K$) near a circular hole are considered. Especially, the defects location at ${\theta}_1=0^{\circ}\;and\;{\theta}_2=30^{\circ}$ was strongly effective in stress concentration factor($K_t$) and crack initiation life($N_i$). The test results indicated the features of different fatigue crack propagation behavior and the different growing delamination shape according to each location of defect around the circular hole in Al/GFRP laminates.

시멘트 복합체의 균열성장거동에 관한 프랙탈 해석 (Crack Growth Behavior of Cement Composites by Fractal Analysis)

  • 원종필;김성애
    • 콘크리트학회논문집
    • /
    • 제13권2호
    • /
    • pp.146-152
    • /
    • 2001
  • 프랙탈 기하는 재료의 파괴거동과 같은 자연계에 존재하는 불규칙한 현상을 비정수의 프랙탈 차원으로 정량화할 수 있다. 이런. 프랙탈 차원에 기초하면 프랙탈 도형은 도형의 일부를 확대하면 전체와 같아지는 자기상사성 특성을 지닌다. 프랙탈적 해석방법을 시멘트 복합체의 파괴시의 균열성장거동에 적용하여 복합체의 미세구조와 파괴거동과의 관계를 알아볼 수 있다. 본 연구의 목적은 시멘트 복합체의 파괴시 소산되는 에너지와 균열의 프랙탈 차원과의 관계를 알아보는데 있다. 시멘트 복합체의 파괴실험을 실시하여 파괴에너지를 측정한 후, 파괴시 형성된 균열형상의 프랙탈 차원을 박스계수법을 통해 산정하고 그 관계를 알아보았다. 실험결과 프랙탈 차원과 파괴에너지의 관계는 비례관계를 나타냈으며 파괴에너지에 대한 프랙탈 차원의 정량적 평가가 가능하다고 사료된다.