• Title/Summary/Keyword: growth and yield model

Search Result 282, Processing Time 0.03 seconds

A Growth and Yield Model for Predicting Both Forest Stumpage and Mill Side Manufactured Product Yields and Economics

  • Schultz Emily B.;Matney Thomas G.
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06b
    • /
    • pp.305-309
    • /
    • 2006
  • This paper presents and illustrates the application of a growth and yield model that supports both forest and mill side volume and value estimates. Traditional forest stand growth and yield models represent the forest landowner view of yield and economics. Predicted yields are estimates of what one would expect from a procurement cruise, and current stumpage prices are applied to investigate optimum management strategies. Optimum management regimes and rotation ages obtained from the forest side view are unlikely to be economically optimal when viewed from the mill side. The actual distribution of recoverable manufactured product and its value are highly dependent on mill technologies and configurations. Overcoming this limitation of growth and yield computer models necessitates the ability to predict and price the expected manufactured distribution of lumber, lineal meters of veneer, and tonnes of air dried pulp fiber yield. With these embedded models, users of the yield simulator can evaluate the economics of possible/feasible management regimes from both the forest and mill business sides. The simulator is a forest side model that has been modified to produce estimates of manufactured product yields by embedding models for 1) pulpwood chip size class distribution and pulp yield for any kappa number (Schultz and Matney, 2002), 2) a lumber yield and pricing model based on the Best Opening Face model developed by the USDA Forest Service Forest Products Laboratory (Lewis, 1985a and Lewis, 1985b), and 3) a lineal meter veneer model derived from peeler block tests. While the model is strictly applicable to planted loblolly pine (Pinus taeda L.) on cutover site-prepared land in the United States (US) Gulf South, the model and computer program are adaptable to any region and forest type.

  • PDF

Application of Dynamic Model SIMRIW for Predicting the Growth and Yield of Rice (수도성장 및 수량예측을 위한 동적모형 SIMRIW의 적용)

  • 이남호
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.2
    • /
    • pp.73-80
    • /
    • 1993
  • A simplified physiologically-based dynamic model, SIMRIW was selected for predicting the growth and yield of rice. The applicability of the model to the rice cultivars and weather conditions in the Republic of Korea was evaluated. Parameters of the model were calibrated using actual rice yields in Suweon region and an optimization scheme, Constrained Rosenbrock Algorithm. The simulated results from the calibrated model were in good agreement with the field data. The model with parameters calibrated for Suweon was applied to other five regions for the evaluation of transferability, but the simulated results fell short of satisfaction. However, the model is found to be applied to real-time prediction of the growth and yield of rice crop, which is believed to be useful for timely rice crop management, agricultural policy making, and optimal irrigation water management.

  • PDF

Development of Yield Forecast Models for Autumn Chinese Cabbage and Radish Using Crop Growth and Development Information (생육정보를 이용한 가을배추와 가을무 단수 예측 모형 개발)

  • Lee, Choon-Soo;Yang, Sung-Bum
    • Korean Journal of Organic Agriculture
    • /
    • v.25 no.2
    • /
    • pp.279-293
    • /
    • 2017
  • This study suggests the yield forecast models for autumn chinese cabbage and radish using crop growth and development information. For this, we construct 24 alternative yield forecast models and compare the predictive power using root mean square percentage errors. The results shows that the predictive power of model including crop growth and development informations is better than model which does not include those informations. But the forecast errors of best forecast models exceeds 5%. Thus it is important to establish reliable data and improve forecast models.

Approximate Yield Criterion for Voided Anisotropic Ductile Materials

  • Kim, Youngsuk;Sungyeun Won;Kim, Dogsoo;Hyunsung Son
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.10
    • /
    • pp.1349-1355
    • /
    • 2001
  • As most fractures of ductile materials in metal forming processes occurred due to the results of evolution of internal damage - void nucleation, growth and coalescence. In this paper, an approximate yield criterion for voided (porous) anisotropic ductile materials is developed. The proposed approximate yield function is based on Gurson's yield function in conjunction with the Hosford's non-quadratic anisotropic yield criterion in order to consider the characteristic of anisotropic properties of matrix material. The associated flow rules are presented and the laws governing void growth with strain are derided. Using the proposed model void growth of an anisotropic sheet under biaxial tensile loading and its effect on sheet metal formability are investigated. The yield surface of voided anisotropic sheet and void growth with strain are predicted and compared with the experimental results.

  • PDF

Development of a Site Productivity Index and Yield Prediction Model for a Tilia amurensis Stand (피나무의 임지생산력지수 및 임분수확모델 개발)

  • Sora Kim;Jongsu Yim;Sunjung Lee;Jungeun Song;Hyelim Lee;Yeongmo Son
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.2
    • /
    • pp.209-216
    • /
    • 2023
  • This study aimed to use national forest inventory data to develop a forest productivity index and yield prediction model of a Tilia amurensis stand. The site index displaying the forest productivity of the Tilia amurensis stand was developed as a Schumacher model, and the site index classification curve was generated from the model results; its distribution growth in Korea ranged from 8-16. The growth model using age as an independent variable for breast height and height diameter estimation was derived from the Chapman-Richards and Weibull model. The Fitness Indices of the estimation models were 0.32 and 0.11, respectively, which were generally low values, but the estimation-equation residuals were evenly distributed around 0, so we judged that there would be no issue in applying the equation. The stand basal area and site index of the Tilia amurensis stand had the greatest effect on the stand-volume change. These two factors were used to derive the Tilia amurensis stand yield model, and the model's determination coefficient was approximately 94%. After verifying the residual normality of the equation and autocorrelation of the growth factors in the yield model, no particular problems were observed. Finally, the growth and yield models of the Tilia amurensis stand were used to produce the makeshift stand yield table. According to this table, when the Tilia amurensis stand is 70 years old, the estimated stand-volume per hectare would be approximately 208 m3 . It is expected that these study results will be helpful for decision-making of Tilia amurensis stands management, which have high value as a forest resource for honey and timber.

Model for Estimating CO2 Concentration in Package Headspace of Microbiologically Perishable Food

  • Lee, Dong-Sun;Kim, Hwan-Ki;An, Duck-Soon;Yam, Kit L.
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.4
    • /
    • pp.364-369
    • /
    • 2011
  • Levels of carbon dioxide gas, a metabolite of microbial growth, have been reported to parallel the onset of microbial spoilage and may be used as a convenient index for a packaged food's shelf life. This study aimed to establish a kinetic model of $CO_2$ production from perishable food for the potential use for shelf life control in the food supply chain. Aerobic bacterial count and package $CO_2$ concentration were measured during the storage of seasoned pork meat at four temperatures (0, 5, 10 and $15^{\circ}C$), and their interrelationship was investigated to establish a mathematical model. The microbial growth at constant temperature was described by using model of Baranyi and Roberts. $CO_2$ production from the stored food could be explained by taking care of its yield and maintenance factors linked to the microbial growth. By establishing the temperature dependence of the microbial growth and $CO_2$ yield factor, $CO_2$ partial pressure or concentration in package headspace could be estimated to a limited extent, which is helpful for controlling the shelf life under constant and dynamic temperature conditions. Application and efficacy of the model needs to be improved with further refinement in the model.

Use of Remotely-Sensed Data in Cotton Growth Model

  • Ko, Jong-Han;Maas, Stephan J.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.52 no.4
    • /
    • pp.393-402
    • /
    • 2007
  • Remote sensing data can be integrated into crop models, making simulation improved. A crop model that uses remote sensing data was evaluated for its capability, which was performed through comparing three different methods of canopy measurement for cotton(Gossypium hirsutum L.). The measurement methods used were leaf area index(LAI), hand-held remotely sensed perpendicular vegetation index(PVI), and satellite remotely sensed PVI. Simulated values of cotton growth and lint yield showed reasonable agreement with the corresponding measurements when canopy measurements of LAI and hand-held remotely sensed PVI were used for model calibration. Meanwhile, simulated lint yields involving the satellite remotely sensed PVI were in rough agreement with the measured lint yields. We believe this matter could be improved by using remote sensing data obtained from finer resolution sensors. The model not only has simple input requirements but also is easy to use. It promises to expand its applicability to other regions for crop production, and to be applicable to regional crop growth monitoring and yield mapping projects.

An interface element for modelling the onset and growth of mixed-mode cracking in aluminium and fibre metal laminates

  • Hashagen, Frank;de Borst, Rene
    • Structural Engineering and Mechanics
    • /
    • v.5 no.6
    • /
    • pp.817-837
    • /
    • 1997
  • In the present contribution an interface crack model is introduced which is capable of modelling crack initialisation and growth in aluminium as well as in Fibre Metal Laminates. Interface elements are inserted in a finite element mesh with a yield function which bounds all states of stress in the interface. Hardening occurs after a state of stress exceeds the yield stress of the material. The hardening branch is bounded by the ultimate stress of the material. Thereafter, the state of stress is reduced to zero while the inelastic deformations grow. The energy dissipated by the inelastic deformations in this process equals the fracture energy of the material. The model is applied to calculate the onset and growth of cracking in centre cracked plates made of aluminium and GLARE$^{(R)}$. The impact of the model parameters on the performance of the crack model is studied by comparisons of the numerical results with experimental data.

Dynamic Growth Model for Pinus densiflora Stands in Anmyun-Island (안면도(安眠島) 소나무 임분(林分)의 동적(動的) 생장(生長)모델)

  • Seo, Jeong-Ho;Lee, Woo-Kyun;Son, Yowhan;Ham, Bo-Young
    • Journal of Korean Society of Forest Science
    • /
    • v.90 no.6
    • /
    • pp.725-733
    • /
    • 2001
  • In this study, the relationship between growth factors for Pinus densiflora stands in Anmyun-Island was analyzed and dynamic growth model was prepared. A total of 96 sample plots was investigated in which dbh and height of individual trees were measured. From these plot data, quadratic mean dbh, mean height, dominant tree height, stem number per ha, basal area per ha and volume per ha were estimated. Several regression equations between growth factors were derived using NLIN and REG procedure of SAS. And dynamic growth model, in which the equations were interactively linked, was prepared for the prediction of stand growth and yield under different management regime. The predictions of dynamic growth model were found to be coincided with general growth principles. The dynamic growth model was considered as adequate for predicting growth and yield of Pinus densiflora stand in Anmyun-Island. In practice, the dynamic growth model can be applied for predicting the growth and development of stand for various forest treatments and for decision-making in forest management.

  • PDF

A model of fatigue crack growth based on plastic stretch at the crack tip (균열선단의 소성스트레치를 이용한 피로균열성장모델)

  • Ju, Yeong Sik;Kim, Jae Hun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.3
    • /
    • pp.15-22
    • /
    • 2003
  • The fatigue crack growth model is derived and the retardation model is proposed. The fatigue crack growth model considers the residual plastic stretch on the crack surface which results from the plastic deformation at the tip of fatigue crack. The fatigue crack growth rate is calculated by using the cumulative fatigue damage and plastic strain energy in the material elements at the crack tip. This model gives the crack growth rate in reasonable agreement with test data for aluminum alloy AL6061-T651 and 17-4PH casting steel. The fatigue crack growth retardation model is based on the residual plastic stretch produced from a tensile overload which reduced the plastic strain range of the following load cycles. A strip-yield model of a crack tip plasticity is used for the calculation of a plastic zone size. The proposed retardation model characterized the observed features and delayed retardation of the fatigue crack growth under tensile overload.