• Title/Summary/Keyword: growth and nitrate dynamics

Search Result 9, Processing Time 0.024 seconds

Growth rates and nitrate uptake of co-occurring red-tide dinoflagellates Alexandrium affine and A. fraterculus as a function of nitrate concentration under light-dark and continuous light conditions

  • Lee, Kyung Ha;Jeong, Hae Jin;Kang, Hee Chang;Ok, Jin Hee;You, Ji Hyun;Park, Sang Ah
    • ALGAE
    • /
    • v.34 no.3
    • /
    • pp.237-251
    • /
    • 2019
  • The dinoflagellate genus Alexandrium is known to often form harmful algal blooms causing human illness and large-scale mortality of marine organisms. Therefore, the population dynamics of Alexandrium species are of primary concern to scientists and aquaculture farmers. The growth rate of the Alexandrium species is the most important parameter in prediction models and nutrient conditions are critical parameters affecting the growth of phototrophic species. In Korean coastal waters, Alexandrium affine and Alexandrium fraterculus, of similar sizes, often form red-tide patches together. Thus, to understand bloom dynamics of A. affine and A. fraterculus, growth rates and nitrate uptake of each species as a function of nitrate ($NO_3$) concentration at $100{\mu}mol\;photons\;m^{-2}s^{-1}$ under 14-h light : 10-h dark and continuous light conditions were determined using a nutrient repletion method. With increasing $NO_3$ concentration, growth rates and $NO_3$ uptake of A. affine or A. fraterculus increased, but became saturated. Under light : dark conditions, the maximum growth rates of A. affine and A. fraterculus were 0.45 and $0.42d^{-1}$, respectively. However, under continuous light conditions, the maximum growth rate of A. affine slightly increased to $0.46d^{-1}$, but that of A. fraterculus largely decreased. Furthermore, the maximum nitrate uptake of A. affine and A. fraterculus under light : dark conditions were 12.9 and $30.1pM\;cell^{-1}d^{-1}$, respectively. The maximum nitrate uptake of A. affine under continuous light conditions was $16.4pM\;cell^{-1}d^{-1}$. Thus, A. affine and A. fraterculus have similar maximum growth rates at the given $NO_3$ concentration ranges, but they have different maximum nitrate uptake rates. A. affine may have a higher conversion rate of $NO_3$ to body nitrogen than A. fraterculus. Moreover, a longer exposure time to the light may confer an advantage to A. affine over A. fraterculus.

UV-B Effects on Growth and Nitrate Dynamics in Antarctic Marine Diatoms Chaetoceros neogracile and Stellarima microtrias (중파 자외선에 노출된 남극 규조 Chaetoceros neogracile와 Stellarima microtrias의 성장과 질산염 흡수량의 변화)

  • Gang, Jae Sin;Gang, Seong Ho;Lee, Yun Ho;Sim, Jeong Hui;Lee, Sang Hun
    • ALGAE
    • /
    • v.18 no.1
    • /
    • pp.13-20
    • /
    • 2003
  • Two isolated Antarctic marine diatoms, Chaetoceros neogracile VanLandingham and Stellarima microtrias (Ehrenberg) Hasle and Sims were examined to show changes of growth and uptake rate of nitrate due to UV-B irradiance. Chlorophyll (chl) a concentration was regarded as the growth index of diatom. The diatoms were treated with UV-B radiation and cultured for 4 days under cool-white fluorescent light without UV-B radiation. Two levels of UV-B exposures were applies: 1 and 6 W $m^{-2}$. Durations of UV-B treatment were 20, 40 and 60 minutes under 6 W $m^{-2}$ and 1, 2, 3, 4 and 5 hrs under 1 W $m^{-2}$. The control groups were cultured at the same time without UV-B radiation. The growth rates of two diatoms decreased under 1 and 6 W $m^{-2}$ UV-B irradiances than that of control group. After 4 days, chl a concentrations of C. neogracile were increased more than 4 times from 133 μgo$l^{-1}$ to 632 μgo$l^{-1}$ in control group. However, the concentration of experimental groups under 1 W $m^{-2}$ UV-B were only increased from 139 μgo$l^{-1}$ to 421 μgo$l^{-1}$ during one hour and the chl a concentrations were decreased from 144 μgo$l^{-1}$ to 108 μgo$l^{-1}$ during five hour. Growth of diatom dramatically more decreased under 6 W $m^{-2}$ UV-B than 1 W $m^{-2}$ UV-B. The chl a concentration of experimental groups under 6 W $m^{-2}$ UV-B for one hour was only increased from 111 μgo$l^{-1}$ to 122 μgo$l^{-1}$. In the case of S. microtrias showed also similar pattern to C. neogracile by UV-B radiation. The uptake rates of nitrate by the two strains were decreased abruptly under 6 W $m^{-2}$ UV-B irradiances. When two strains were treated under 1 and 6 W $m^{-2}$ UV-B during one hour, the strains were only continued growth and uptake of nitrate under 1 W $m^{-2}$ UV-B. This experimental evidence shows that exposure to UV-B radiation especially to high irradiance of UV-B decreases diatom survival and causes lower decrease of nutrient concentrations by microalgae in Antarctic water. Furthermore, evidence suggests that microalgal communities confined to near-surface waters in Antarctica will be harmed by increased UV-B radiation, thereby altering the dynamics of Antarctic marine ecosystems.

Nutrient Uptake and Growth Kinetics of Chattonella antiqua (Hada) Ono (Raphidophyceae) Isolated from Korea

  • Seo, Kyung-Suk;Lee, Chang-Kyu
    • ALGAE
    • /
    • v.22 no.3
    • /
    • pp.235-240
    • /
    • 2007
  • The red tide-causing flagellate Chattonella anticfua can cause mass fish kills by their clogging in fish gills. Thisstudy examined the nutrient requirements of C. antiqua isolated from Korea. C. anticfua displayed maximum growthat the day five, followed by a decrease in cell density. Nitrate and nitrite were the preferred nitrogen sources, alonewith adenosine diphosphate for phosphorus compounds. In medium that contained ammonium, a significantdecrease in cell density was observed. Half-saturation constants, Ks, calculated from the maximum growth ratewere 4.94 U|M for NC>3 and 0.79 flM for P04. The growth of C. antiqua was not within the function of the N:P ratio (RU= 0.29). With an N:P ratio as low as 10, the increase in cell density was apparent, with a higher division rate. At lev-els above 50 fiM of NaNOg or 8 ;uM of NaHUPCU, the growth rates were somewhat decreased. Phosphate was thelimiting factor for C. antiqua growth since the starvation of phosphate had brought about a rapid decrease in celldensity in semi-continuous culture. Studies about the temporal modification of the efficiency of nitrate or phosphateuptake may be necessary to explain the bloom dynamics of C. antiaua.

Spatio-temporal Fluctuations of Size-structured Phytoplankton over an Annual Cycle in the Youngsan Lake

  • Song, Eun-Sook;Shin, Yong-Sik
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.4
    • /
    • pp.530-540
    • /
    • 2008
  • The temporal and spatial variations of size-structured phytoplankton dynamics in Youngsan Lake were investigated to explore potential mechanims controlling the dynamics in the Youngsan Lake. Field data were collected monthly from February to October, 2003 at 6 stations along the axis of Youngsan Lake. In this study, phytoplankton (chlorophyll $\alpha$) were categorized into three size classes: micro-size ($>20{\mu}m$), nano-size ($2{\sim}20{\mu}m$) and pico-size ($<20{\mu}m$). Water temperature, light attenuation coefficients, PAR (photosynthetically active radiation) and suspended solids were measured to analyze relationship between physical-chemical properties and size structure of phytoplankton. Phytoplankton blooms developed during March, July and October in the upper region of the main stem whereas small-scaled spring bloom was observed in the lower region. The scales of phytoplankton blooms were higher in the upper regions than the lower region and blooms were predominated by micro-size class in upper region but predominated by nano-size class in lower region. Growth of size-structured phytoplankton appeared to be controlled by rather light availability than temperature-dependant metabolisms in the system. Phytoplankton growth may be also supported by ambient nutrients available in the water column from analyses of chlorophyll $\alpha$ vs. nutrient concentrations including nitrite+nitrate and orthophosphate. Growth of nano-sized phytoplankton alone appeared to be supported by orthophosphate as well as nitrite+nitrate indicating that response of phytoplankton to nutrient inputs may be size-dependent.

Nitrogen Dynamics in Soil Amended with Different Rate of Nitrogen Fertilizer

  • Kim, Sung Un;Choi, Eun-Jung;Jeong, Hyun-Cheol;Lee, Jong-Sik;Lee, Hyun Ho;Park, Hye Jin;Hong, Chang Oh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.6
    • /
    • pp.574-587
    • /
    • 2017
  • Excessive application of nitrogen (N) fertilizer to support switchgrass growth for bioenergy production may cause adverse environmental effects. The objective of this study was to determine optimum N application rate to increase biomass yield of switchgrass and to reduce adverse environmental effects related to N. Switchgrass was planted in May 2008 and biomass yield, N uses of switchgrass, nitrate ($NO_3$) leaching, and nitrous oxide ($N_2O$) emission were evaluated from 2010 through 2011. Total N removal significantly increased with N rate despite the fact that yield did not increased with above $56kg\;N\;ha^{-1}$ of N rate. Apparent nitrogen recoveries were 4.81 and 5.48% at 56 and $112kg\;N\;ha^{-1}$ of N rate, respectively. Nitrogen use efficiency decreased into half with increasing N rate from 56 to $112kg\;N\;ha^{-1}$. Nitrate leaching and $N_2O$ emission were related to N use of switchgrass. There was no significant difference of cumulative $NO_3$ leaching between 0 and $56kg\;N\;ha^{-1}$ but, it significantly increased at $112kg\;N\;ha^{-1}$. There was no significant difference of cumulative $N_2O$ emission among N rates in crest, but it significantly increased at $112kg\;N\;ha^{-1}$ in toe. Excessive N application rate (above $56kg\;N\;ha^{-1}$) beyond plant requirement could accelerate $NO_3$ leaching and $N_2O$ emission in switchgrass field. Overall, $56kg\;N\;ha^{-1}$ might be optimum N application rate in reducing economic waste on N fertilizer and adverse environmental impacts.

Physico-Chemical Factors on the Growth of Cochlodinium polykrikoides and Nutrient Utilization (Cochlodinium polykrikoides의 성장에 미치는 물리$\cdot$화학적 요인과 영양염 이용)

  • KIM Hyung Chul;LEE Chang Ku;LEE Sam Geun;KIM Hak Gyoon;PARK Chung Kil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.5
    • /
    • pp.445-456
    • /
    • 2001
  • In the 1990s, Cochlodinium polykikoides red tide has been annually occurred in the southern coast of Korea and caused the mass damage to the fisheries with a huge amount of economic loss. The present study was done to establish the biological foundation for the elucidation of the mechanism of C. polykikoiaes red tide. The growth response of C. polykikoides to physico-chemical factors such as temperature, salinity, pH, and light intensity were examined using axenic cultures to evaluate the relative importance of these factors on the dynamics of natural populations, It was found that the highest growth conditions were $25^{\circ}C,\;40\%_{\circ}$, pH 7.5, and 7,500 lux, respectively. The tolerable salinity range of growth was relatively wide at an optimum temperature and was reduced to a much narrower range at a sub-optimum temperature. These findings indicate that C. polykikoides is an eurythermal and euryhaline organism. The organism demanded higher light intensity and oceanic pH narrow in its growth. C. polykikoides utilize inorganic nutrients, such as nitrate and ammonium as N, and phosphate as P. The nutritional requirements of C. polykikoides were $40{\mu}M$ for nitrate, $50{\mu}M$ for ammonium, and $5{\mu}M$ for phosphate. The half saturation constant (Ks) for growth was $2.10{\mu}M$ for nitrate, $1.03{\mu}M$ for ammonium, and $0.57{\mu}M$ for phosphate. These values were comparatively smaller than those of other dinoflagellates reported previously. We confirmed that the organism is characterized as an eutrophic species. However, ammonium Ks value is smaller than that of other eutrophic species, This result indicates that C. polykikoides red tide may outbreak in the waters which eutrophication is in progress rather than eutrophicated waters. C. polykikoides preferred ammonium better than nitrate as a nitrogen source when in a growth stage, Therefore, our results indicate that ammonium is more important nutrient on the growth of the organism in comparison with other inorganic nutrients and C. polykikoides red tide is related with the increased ammonium concentration in the coastal waters.

  • PDF

Primary Productivity and Nitrogenous Nutrient Dynamics in the East Sea of Korea (한국 동해의 기초생산력과 질소계 영양염의 동적관계)

  • Chung, Chang Soo;Shim, Jae Hyung;Park, Yong Ghul;Park, Sang-Gap
    • 한국해양학회지
    • /
    • v.24 no.1
    • /
    • pp.52-61
    • /
    • 1989
  • The daily net primary production by phytoplankton and ammonium excretion by macrozooplankton (> $350{\mu}m$) were measured to understand the nitrogenous nutrient dynamics in the southern part of the East Sea of Korea. At most of the staions, water columns were well stratified and strongly developed pycnoclines and matching nutriclines could be found near the 20-60m. Total chlorophyll ranged between $1.22-3.24{\mu}g$ ChI/l and nano-fractions of chlorophyll ranged from 43.2 to 99.6% in the surface layer. The daily net primary production by phytoplankton ranged from 0.75 to 2.04 gC/$m^2$/d and averaged to be 1.5 gC/$m^2$/d. 1t is evidenced that the primary production and chlorophyll content are relatively high in frontal waters where the North Korean Cold Water meets with the East Korean Warm Water. The turnover time of nitrate in the euphotic zone ranged from 0.2 day to 1.6 day and averaged to be 0.8 day. The N:P ratio of the study area shows on the average 13.4 which indicates nitrogenous nutrient to be the limiting factor for phytoplankton growth. Ammonium excretion by macrowoplankton averaged out to 1.3mg at-N/$m^2$/d, and contributed 7.3% of daily total nitrogen requirement by phytoplankton in this area. Calculation of upward flux of nitrate to the surface mixed layer from the lower layer approximates 7% of nitrogen requirement by phytoplankton.

  • PDF

Primary Productivity Measurement Using Carbon-14 and Nitrogenous Nutrient Dynamics in the Southeastern Sea of Korea (한국 동남해역의 해양기초생산력 (C$^{14}$ )과 질소계 영양염 동적 관계)

  • 심재형;박용철
    • 한국해양학회지
    • /
    • v.21 no.1
    • /
    • pp.13-24
    • /
    • 1986
  • The daily net primary production by phytoplankton in the southeastern sea of Korea in October 1985 ranged from 0.7 to 2.7 gCm$\^$-2/ d$\^$-1/ and averaged to be 1.3 gCm$\^$-2/ d$\^$-1/. Surface total chlorophyll ranged from 0.97 to 3.59mg chlm$\^$-3/. Primary production by nano-phytoplankton(〈20$\mu\textrm{m}$) ranged from 43 to 97% in the surface layer. Optimum light intensity(Iopt)was around 300 to 700${\mu}$Es$\^$-1/m$\^$-1/. Surface primary production from 9:00 to 15:00 h was evidently inhibited by strong light intensity beyond the Iopt. Phytoplankton near the base of euphotic zone(30-40m) showed extremely low Iopt suggesting adaptation to a low light environment. Since Iopt represents the history of light experience of phytoplankton at a given depth, the extent of variation in I of phytoplankton at different depth seems to be related to the in tensity of turbulence mixing in the surface mixed layer. From the present study, ammonium excretion by macrozooplankton (〉350$\mu\textrm{m}$) contributes from 3 to 19% of daily total nitrogen requirement by phytoplandton in this area. Calculation of upward flux of nitrate to the surface mixed layer from the lower layer, based on the simple diffusion model, approximates 3% of nitrogen requirement by phytoplankton. However, large portion of nitrogen requirement by phytoplankton remains unexplained in this area. In upwelling area near the coast, adjective flux might be the major source for the nitrogen requirement by phytoplankton. This study suggests that the major nitrogen source for the phytoplankton growth might come from the pelagic regeneration by nano-and micro-sized heterotrophic plandkon. Enhancement of primary production during the passage of the warm Tsushima Current is discussed in relation with nutrient dynamics and hydrlgraphic processes in this area.

  • PDF

Seawater N/P ratio of the East Sea (동해 해수의 질소:인의 비)

  • LEE, TONGSUP;RHO, TAE-KEUN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.20 no.4
    • /
    • pp.199-205
    • /
    • 2015
  • Nitrogen and phosphorus are the limiting elements for growth of phytoplankton, which is a major primary producer of marine ecosystem. Incidentally the stoichiometry of N/P of ocean waters, measured by the (nitrate + nitrite)/phosphate ratio converges to a constant of 16. This characteristic ratio has been used widely for the understanding the ecosystem dynamics and biogeochemical cycles in the ocean. In the East Sea, several key papers were issued in recent years regarding the climate change and its impact on ecosystem dynamic and biogeochemical cycles using N/P ratio because the East Sea is a "miniature ocean" having her own meridional overturning circulation with the appropriate responding time and excellent accessibility. However, cited N/P values are different by authors that we tried to propose a single representative value by reanalyzing the historical nutrient data. We present N/P of the East Sea as $12.7{\pm}0.1$ for the year 2000. The ratio reveals a remarkable consistency for waters exceeding 300m depth (below the seasonal thermocline). We recommend to use this value in the future studies and hope to minimize confusion for understanding ecosystem response and biogeochemical cycles in relation to future climate change until new N/P value is established from future studies.