Proteins and lipids not only provide a source of energy to the cell, but also play vital roles in modifying the physical properties and function of the biological membranes. In the present study, we investigated the biochemical constituents, viz. proteins and lipids, in growing oocytes of goat antral follicles during summer and winter seasons. Goat genitalia in phosphate buffered saline (pH 7.4) were brought to the laboratory within one hour of slaughter under aseptic conditions at $37^{\circ}C$. Oocytes were aspirated from normal small (<3 mm in diameter) and large (>3 mm) follicles and pooled for biochemical estimations. A significant increase in the amount of protein and lipid was observed with the growth of the oocyte. The amount of protein varied non-significantly with the season, while the amount of lipid varied significantly. The amounts of phospholipid, cholesterol, free fatty acid, and triglyceride increased with the growth of the oocyte, but no significant effect of season in these constituents was observed. Lysolecithin, sphingomyelin, and sterols were the polar lipids identified in both oocytes prepared from small follicles (small oocytes) as well as large follicles (large oocytes). In addition, the small oocytes also contained phosphatidyl serine, while large oocytes contained phosphatidyl glycerol phosphate and phosphatidyl inositol. Among non-polar lipids, triglycerides and long chain alcohols appear only in small oocytes and not in large oocytes. Monoglycerides, 1,2-diglycerides, 1,3-diglycerides and o-dialkyl glycerol ethers, fatty acids, fatty acid methyl esters, and wax esters were identified in both small and large oocytes. Information on biochemical composition of growing oocytes is relevant to oocyte and embryo competence, culture and cryopreservation.
We studied primary production, nitrogen and phosphorus dynamics in a salt marsh of Okryutung at Nakdong River estuary. The standing biomass in Phragmites longivalvis, Carex scabrifolia and Zoysia sinica stand was $5.48kg/\textrm{m}^2,{\;}1.94kg/\textrm{m}^2{\;}and{\;}1.95kg/\textrm{m}^2$, respectively. The peak above-ground biomass in each stand was $1.99kg/\textrm{m}^2,{\;}0.74kg/\textrm{m}^2{\;}and{\;}1.03kg/\textrm{m}^2$, respectively. Soil nitrogen decreased from the onset of growing seson till July, and then increased. Seasonal patterns of soil phosphorus were different from stand to stand. Nitrogen concentrations of above-ground plant tissus were quite different among the plant species at the very beginning of the growing season, however, they became similar as the plants grow. Seasonal pattern of phosphrous in C. scabrifolia roots was quite different from those other two species. Nitrogen absorbed by plants during season in P. longivalvis, C. scabrifolia and Z. sinicia stand was 224kg/ha, 111kg/ha, 156kg/ha, respectively. Phosphorus taken up by plants was 22kg/ha, 29kg/ha and 21kg/ha, respectively. Because the vascular plants growing at salt marshes can immobilize large quantities of nitrogen and phosphorus, salt marsh vegetation can be sued for preventing the pollution of coastal sea water.
The reproductive ecology of the purple shell, Rapana venosa was investigated by the histological observations on depositions of the egg capsules, and hatching of larvae in the laboratory and the subtidal zone of the vicinity of piung-do, Chollabud-do, west coast of korea, for one year from June 1992 to May 1993. The results are summarized as follows:1. Rapana venosa is dioecious in sex. The ovary is composed of a number of ovarian lobules, and the testis comprises a number of ovarian lobules, and the testis comprises of gonads could be classified into 4 stages in males and 5 stages in females: 1) growing stage(in female subdivided into 2 stages of early and late growing stage). 2)mature stage. 3)spent stage or copulationstage. 4)rdcovering stage. The early growing stage in females of the purple shell was in September through February, late gorwing stage was in October to March, mature stage was in September to January, mature stage was in September to July, copulation stage was in Februaty to June and recovering stage in April to October.3. Spawning occurred 3-4 times at intervals of 1-3 days, and completed within 10 days from the beginning of spawning during the spawning season of the year.4. From the results of laboratory and field observations, egg masses are composed of a number of egg capsules, egg masses are occurred from May to late August, and in mid August depositions of egg mass in composed of 90-113 egg capsules, fecundity in an egg capsule was ranged 984 to 1,241 eggs(average 1,096 egg). Therefore, fecundity in total egg capsules spawned per individual during the spawning season is estimated as approximately 320,000 to 450,000 egges.5. The incubation period during deposition of an egg capsule to hatching larvad tood 17 days at 18.3-20.4%C(water temperature)and 1.021 (specific gravity fo sea water).
The objectives of this study were to investigate the morphology of mycorrhizal roots, and the effects of root age and soil texture on the mycorrhizal infection in ginseng (Panax ginseng C. A. Meyer) growing in Korea. Ginseng roots at ages of two to six years were collected from fields in late June. Their infection by arbuscular mycorrhizal fungi(AMF) was studied by clearing the roots and staining fungal hyphae with trypan blue. Root infection varied greatly depending on the developmental stages of young roots. Young tertiary roots, in diameter of smaller than 0.8 mrn, formed during the current growing season had root hairs and were frequently and in some cases heavily infected by AMF. Hyphal coils and arbuscules were abundant, while vesicles were rarely observed. Older secondary or tertiary roots in diameter of bigger than 1.0 mm with fully differentiated primary xylem formed during the previous growing season had no root hairs, and were not infected at all. The rates of mycorrhizal infection in the young tertiary roots were not affected by the age of the ginseng plants, suggesting that fungal populations might have not much changed during the aging of the cultivated fields up to six years. The differences in the infection rates among the different ages of ginseng were caused by differences in the amount of young tertiary roots in the samples. Soil texture, either sandy loam or clay loam, did not affect the rate of root infection. There were large variations in the infection rates among the different farms and locations within a farm. It strongly suggested that infection rates of the ginseng roots by AMF would be influenced by the practice of the farmers, possibly by avoiding consecutive planting, introduction of new topsoil, and the ways of handling the soil before transplanting the ginseng, such as fumigation or sterilization that might have affected indigenous inoculum sources of the AMF.
Kim, Hye-kwon;Kim, Tae-yung;Lim, Jong-sung;Lee, Yang-ho;Park, Bong-kyun
Korean Journal of Veterinary Research
/
v.45
no.1
/
pp.55-61
/
2005
Serum samples of 1,175 pigs from 148 Korean swine farms not using Mycoplasma hyopneumoniae (M. hyo) vaccines were collected for seroepidemiological study of M. hyo infection by indirect ELISA method. Informations of each farm were provided about province where the farm was located and season when blood samples were collected. Then, the selected farms were divided into farm units which had 5 serum samples according to production stages : sow, suckling piglet (<30 days old), nursery pig (30-70 days old), and growing pig (>70 days old). Seroprevalence of M. hyo infection according to production stages, province, and season was investigated by using ELISA-positve rate of the selected samples for each study. This study showed that 85.34% (78.94-91.78%, 95% CI) of farms were positive to M. hyo infection and 34.81% (32.09-37.53%, 95% CI) among pigs were sero-positive to M. hyo infection in Korean swine farms. In the study of seroprevalence by production stage, most farms had sows and growing pigs which were sero-positive to M. hyo infection (sow: 83.05%, growing pigs: 87.72%) and most pigs seemed to be naturally infected by M. hyo at 8-10 weeks of age. Also, M. hyo infection showed seasonal pattern that most pigs were infected in late fall to early winter. However, in the study of seroprevalence by province, there was no significant correlation between province and M. hyo sero-positive rate.
Ham, Jong-Hwa;Yoon, Chun G.;Koo, Won-Seck;Kim, Hyung-Chul;Shin, Hyum-Bhum
Journal of The Korean Society of Agricultural Engineers
/
v.47
no.1
/
pp.79-91
/
2005
Wetland systems are widely accepted natural water purification systems around the world in nonpoint sources pollution control. Constructed wetlands have become a popular technology for treating contaminated surface and wastewater. In this study, the field experiment to reduce nonpoint source pollution loadings from polluted stream waters using wetland system was performed from June 2002 to March 2004, including winter performance using four newly constructed wetlands. The Dangjin stream water flowing into Seokmun estuarine lake was pumped into wetlands, and inflow and hydraulic residence time of the system was $500m^{3}{\~}1500m^{3}/day\;and\;2{\~}5$ days respectively. After 3 years operation plant-coverage was about $80~90\%$ from zero at initial stage even with no plantation. Average water quality of the influent in growing season was BOD_{5}\;3.96mg/L$, TSS 22.98 mg/L, T-N 3.29 mg/L, T-P 0.30 mg/L. The average removal rate of four wetlands for $BOD_{5},\;TSS,\;T-N\;and\;T-P$ in growing season was $24\%$, $62\%$, $54\%$, and $51\%$, respectively. And average water quality of the influent in winter season was $BOD_{5}$ 4.92 mg/L, TSS 12.47 mg/L, T-N 5.54 mg/L, and T-P 0.32 mg/L, respectively. The average removal rate of four wetlands for them was $-21\%$. $23\%$, $33\%$, and $53\%$, respectively. The reason of higher BOD_{5} effluent concentration in winter season might be that low temperature restrained microorganism activity and a organic body from the withered plant and algae was flown out. Except the result of $BOD_{5}$, the effectiveness of water quality improvement in winter season was satisfactory for treating polluted stream waters, and $BOD_{5}$ variation was within the range of background concentration. Performance of the experimental system was compared with existing data base (NADB), and it was within the range of general system performance. Overall, the wetland system was found to be satisfactory for NPS control such as improvement of polluted stream water.
Nitrogen fertilization and cutting practice were studied on turfgrasses and cover plants to investigate the possibility of maintaining green color during the growing season. Research also involved the effect of the nitrogen on a few morphological characteristics of leaf performance elements which might give an information to coloration and life-span of turf leaves. Treatments in the first experiment undertaken on pot included one N level: 350kgN /ha applied as compound fertilizer in split applications of one-half in mid-May and the rest both in late June and August, and four spring-summer cuts: late May, late June, late July and late August. The soil filled in pot a moderately well-drained sandy loam. In the second experiment(field observation) leaf length and width, inflorescence and flowering, and color performance were also investigated. With nitrogen fertilizer applied on turfs, desirable turf color was maintained during a period of poor coloration in specific seasons such as mid-summer for cool season grasses and late fall for warm season grasses comparing to the non-treatment. However, this was not stimulated by cutting treatment to nitrogen status existed. Cutting effect on coloration was more remarkable in both Korean lawngrass and Manilagrass than in cool season turfgrasses such as Italian rye-grass, perennial ryegrass and tall fescue. Especially down-slide of leaf color in cool season turfgrasses could he detected in mid-summer /early fall season ranging up to mid-September. In early November as well as mid-September, Italian ryegrass, perennial ryegrass and tall fes-cue retained a high level of green color as followed by nitrogen application and cutting treatment, and little detectable variation of leaf color notation between cool season turfgrasses was obtained. However, Korean la'vngrass and Manilagrass failed to retain the green color until early November. Color notations in cool season turfgrasses investigated early November on the final date of the experiment ranged from 5 GY 3/1 to 4/8 in 'Ramultra' Italian ryegrass, 'Reveile' perennial ryegrass and 'Arid' tall fescue, but those in Zoysiagrasses were 7.5 YR 4/8 in Korean lawngrass and 2.5 y 5 /6 in Manilagrass. Life-span of leaves was shorter in Italian ryegrass, perennial ryegrass and tall fescue than in beth Korean lawngrass and Manilagrass with and without nitrogen application. In general, leaves appeared in early May had a long life-span than those appeared in late April or mid-June. Nitrogen application significantly prolonged the green color retaining period in perennial ryegrass, Italian ryegrass, Korean lawngrass and Manilagrass, and this was contrasted with the fact that there was no prolonged life-span of leaves emerging in early May and mid-June in tall fescue. SPAD reading values in 48 turfs and cover plants investigated in the field trial were increasing until late June and again decreasing till September. Increasing trends of reading value could be observed in the middle of October in most of grasses. On the other hand, clovers and reed canarygrasses did not restore their color values even in October. Color differences between inter-varieties, and inter-species occurred during the growing season under the field condition implicated that selection of species and /or cultivars for mixture should be taken into consideration. In Munsell color notation investigated in the final date in the middle of November, 32 cultivars belonged under the category of 5 GY and 10 cultivars under the category of 7.5 GY. This was implying that most of cool season turfs and cover plants grown in the center zone of Korean Peninsula which are able to utilize for landscape use can bear their reasonable green color by early or mid-November when properly managed. The applicable possibilities of SPAD readings and Munsell color notation to determine the color status of turfgrasses and cover plants used in this study were discussed.
Korean Journal of Agricultural and Forest Meteorology
/
v.20
no.4
/
pp.386-396
/
2018
Cropland is sources of atmospheric nitrous oxide ($N_2O$) and carbon dioxide ($CO_2$). However, the contribution of the fallow season to emission of these gases has rarely been determined. In this study, a field experiment encompassing three treatments was conducted to determine efflux of $N_2O$ and $CO_2$ in cropland during fallow season. The treatments were hairy vetch (H.V.), rye and control (Con.). The H.V. and rye were sown in middle October and early November, respectively. The soil $N_2O$ efflux among all three treatments in the fallow season (November-April) were $0.014-2.956mg\;N_2O\;m^{-2}{\cdot}d^{-1}$. The cumulative $N_2O$ emissions were $104.4mg\;N_2O\;m^{-2}$ for Con., $85.8mg\;N_2O\;m^{-2}$ for H.V. and $85.0mg\;N_2O\;m^{-2}$ for Rye during the fallow season. The highest $N_2O$ emissions occurred in Con., while H.V. and Rye emissions were similar. Cumulative $CO_2$ emissions were $293.1g\;CO_2\;m^{-2}$ for Con., $242.2g\;CO_2\;m^{-2}$ for H.V., $275.2g\;CO_2\;m^{-2}$ for Rye during fallow season. This study showed that soil $N_2O$ and $CO_2$ average daily emission during fallow season were 28.3% and 27.4%, respectively of the growing season. Our results indicate that $CO_2$ and $N_2O$ emissions from agricultural systems continue throughout the fallow season.
The effects of inflorescence herbivory and flowering time on plant architecture and reproductive yields were examined with a perennial herbacious species, Vicia cracca, occurring in Natick, Massachusetts, USA. Natural herbivory on inflorescences was observed among the total of 157 plants during a growing season. Vegetative and reproductive characters were measured in the field as well as in the lab depending on the characters. Approximately 64% of the plants were subjected to herbivory on inflorescences. Plants were classified into three groups; unbrowsed plants, partially browsed, and totally browsed plants, according to the level of herbivory on inflorescences of each plant. Plants were also categorized by their flowering time such as early vs late flowering plants. Herbivores tended to favor inflorescences on rather small plants, resulting in a pattern of totally contact or partially intact inflorescences on taller plants. The mean number of stems, which was assumed to be a direct result of severe herbivory in this population, differed among herbivory groups. There also was a tendency that plants flowering late in the season had more nodes with more leaves, suggesting that herbivory on stem tips early in the season before flowering might have induced growth of side branches or branchlets along the main stems. Comparison between unbrowsed and partially browsed plants showed that the latter compensated for browsing in terms of numbers of inflorescences, fruits, seeds and seed size (weight), though they did not compensate in flower number. The probability of fruit production (presence vs absence of fruits) and seed weight declined toward the end of the season. These results suggest that resources are deficient at the end of the season. Almost complete reproductive failure in totally browsed plants is attributed to the destruction of inflorescence display and the disadvantage of small vegetative size of those plants. After all, in this population, a moderate level of herbivory on inflorescences did not reduce the maternal fitness of the plants. However, severe herbivory on inflorescences resulted in antagonistic interactions between plants and herbivores.
Magazine of the Korean Society of Agricultural Engineers
/
v.44
no.4
/
pp.139-148
/
2002
Pilot study was performed to examine the feasibility of the pond system for further polishing of treatment wetland effluent from December 2000 to June 2001. The wetland system used for the experiment was highly effective to treat the sewage during the growing season, but it was less effective and its effluent was still high to discharge to the receiving water body. Therefore, the wetland effluent may need further treatment to prevent water quality degradation. Pond system could be used to hold and further polish the wetland effluent during the winter season and ots feasibility was evaluated in this study. Additional water quality improvement was apparent in the pond system during winter season, and the pond effluent could be good enough to meet the effluent water quality standards if it is properly managed. Timing of the pond effluent discharge appears to be critical for pond system management because it is a closed system and whole water quality constituents are affected by physical, chemical, and biological pond environments. Once algae started to grow in mid-April, constituents in the pond water column interact each other actively and its control becomes more complicated. Therefore, upper layer of the pond water column which is clearer than the lower layer my need be discharged in March right after ice cover melted. In the experiment, water quality of the upper water column was markedly clear in March than ant other times probably because of freezing-thawing effect. The remaining lower water column could be further treated by natural purification as temperature goes up or diluted with better quality of wetland effluent for appropriate water uses. This study demonstrated the feasibility of pond system for subsequent management of wetland effluent during the winter season, however, more study is needed for field application.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.