• Title/Summary/Keyword: grow

Search Result 4,204, Processing Time 0.038 seconds

Isolation, characterization, and phylogenetic position of a new sulfur-oxidizing bacterium

  • Chang, So Youn;Yoon, Joon Sik;Park, Yong Ha;Yang, Song Suk;Yoon, Seong Myeong;Lee, In Hwa;Kim, Si Wouk
    • Journal of Microbiology
    • /
    • v.35 no.3
    • /
    • pp.165-171
    • /
    • 1997
  • A sulfer-oxidizing bacterium was isolated from mine wastewater and characterized. The isolate was gra-negative, rod (0.2 * 1.2-1.5.mu.m), nonmotiloe, catalase positive, and oxidase prositive. The opotimal pH and temperature for growth were 7.0 and 30.deg.C. respectively. The optimum thiosulfate concentration was 70 mM and the maximum growth rate was 0.081 hr. The major ubiquinone contained in the isolate was Q-8. The cellular fatty acid composition was $C_{16 : 0}$, $C_{18 : 1}$, $C_{17cyc}$,and $C_{19cyc}$ as nonpolar fatty acids, and 3-OH C10 : 0 and 3-OH $C_{12 : 0}$ as hydroxylated fatty acids. The isolate was a facultative chemolithoautotroph which can grow autotrophically on sodium thiosulfate and sodium sulfide and which can grow heterotrophically on yeast extract. It can also grow mixotrophically on sodium thiosulfate and yeast extract. Comparison of the 16S rRNA gene sequence of the isolate with that of Thiobacillus species and Paracoccus thiocyanatus revealed that it is closely related to T. caldus which belongs to the .betha.-subclass of the class Proteobacteria. However, the isolated could not grow at extremely low pH (pH 1-3.5). On the basis of the phenotypic, chemotaxonomic and phylogenetic data, the isolate was tentatively named Thiobacillus sp. strain C.ain C.

  • PDF

A Study on a Mutual Win-Win Growth Strategy for Korean Supermarkets

  • Park, Han-Hyuk;Kang, Dong-Nam;Lee, Sang-Youn
    • Journal of Distribution Science
    • /
    • v.12 no.3
    • /
    • pp.43-53
    • /
    • 2014
  • Purpose - This study suggested a practical model for super supermarkets (SSMs) and small- and medium-sized stores to grow together. Super centers expanded their business. However, after the retail distribution law was revised in 2009, mutual cooperation between large and small enterprises resulted in social issues and people raised the issue of profitability. Research design, data, and methodology - This study investigated cases of regulation over distribution in Japan, France, and other countries to reveal implications and recommendations. Results - This study demonstrated how SSM and middle and small supermarkets could grow together by franchising and using cooperative society law. Franchising was a mutual growth model whereby the franchiser provided franchisees with large enterprise systems and utilities while franchisees could provide the franchiser with local information. They could thus build trust in each other to facilitate a mutual growth model. Further, the voluntary franchise system's model facilitated the mutual growth model. Conclusions - This study demonstrates that the franchise system and cooperative society could constitute an ideal model whereby large enterprises and middle and small stores could rely upon each other and grow together.

The Economic Feasibility Analysis of Grow out Phase Production of Oyster Farming by Rising Water Temperature (기후변화로 인한 수온상승이 굴양식 본양성 생산방식의 경제성에 미치는 영향분석)

  • Choi, Jong Du;Choi, Young Jun
    • Ocean and Polar Research
    • /
    • v.36 no.2
    • /
    • pp.157-163
    • /
    • 2014
  • This study analysed the economic feasibility per hectare of grow out phase production of Oyster farming by rising water temperature in Ocean. Elevated Water temperature by climate change had a bad influence for oyster production and economic feasibility. In the case of production units, the total output of oyster decreases from 213,840 to 205,594 units. Using cost-benefit analysis with discounting rates (5.5%), we estimated the net present value (NPV) and benefit cost ratio (BCR) until 2100 years. The model results showed that the NPV without water temperature rise was 1,565,619,893 won and the NPV with water temperature rise was 1,540,493,059 won. Also, BCR estimated that the former was 2.095 better than the latter was 2.077. To summarise, the economic effect per hectare of water temperature rise in ocean did the damage to the economic loss about 25,126,834 won.

Isolation and Characterization of Bacteria Able to Grow with Phenol at High Concentrations for Bioremediation (생물학적 환경정화를 위한 고농도 페놀에서 생육할 수 있는 세균의 분리 및 특성)

  • 박연규;손홍주
    • Korean Journal of Environmental Biology
    • /
    • v.19 no.1
    • /
    • pp.87-92
    • /
    • 2001
  • For the biological treatment of industrial wastewater containing high concentration of phenol, isolation and characterization of phenol - degrading bacterium were carried out. A bacterial strain P2 capable of degrading phenol was isolated from contaminated soils by enrichment culture technique and identified as the genus Rhodococcus by morphological, cultural, biochemical characteristics, and Biolog system. The optimal medium composition and cultural conditions for the growth and degradation of phenol by Rhodococcus sp. P2 were 0.1% of (NH$_4$)$_2$SO$_4$, 0.2% of KH$_2$PO$_4$, 0.25% of Na$_2$HPO$_4$ㆍ12$H_2O$, 0.2% of MgSO$_4$ㆍ7$H_2O$, and 0.008% of CaC1$_2$ㆍ2$H_2O$ along with initial pH 8.5 at 3$0^{\circ}C$. Rhodococcus sp. P2 could grow with phenol as the sole carbon source up to 1,800 ppm in batch cultures, but did not grow in medium containing above 2,000 ppm of phenol. When 800 ppm phenol was given in the optimal media, Rhodococcus sp. P2 completely degraded it within 24 h. Meanwhile, 1,800 ppm of phenol was degraded within 9 days. Rhodococcus sp. P2 could utilize toluene, n-hexane, xylene and benzene as sole carbon source .

  • PDF

INFLUENCES OF SOIL-WATER PROPERTIES ON GROWTH OF MEDICINAL PLANT "KANZO" UNDER CONSTANT GROUNDWATER LEVEL

  • Kiyotomo, Haruka;Yasufuku, Noriyuki;Omine, Kiyoshi;Kobayashi, Taizo;Furukawa, Zentaro
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09c
    • /
    • pp.81-85
    • /
    • 2010
  • The medicinal plant, Kanzo (Glycyrrhiza uralensis), mainly grows on arid lands. The root of Kanzo has been compounded about 70% of herbal medicines in Japan because it has an important medicinal element. In addition, in recent years, the expansion of desertification becomes a serious problem. The cause is chiefly man activity such as over gathering plants1). The aim of this study is to prevent desertification by cultivating Kanzo with high quality. The first step is to grow Kanzo for greening. The second step is to stably produce the root with high medicinal quality. This paper presents growth properties of cultivating Kanzo by bottom watering method, which is under constant groundwater level. The main results of this paper are as follows: (1) The lower water content of cultivating soil is, the longer the root length is, (2) Growth of Kanzo is influenced by soil types, (3) Thick primary roots grow directly and vertically in low water content. On the other hand, thin secondary roots grow curvedly and horizontally in high water content and (4) Measuring evapo-transpiration velocity is the effective method to evaluate roots' growth tendency in the field.

  • PDF

Biology and Health Aspects of Molds in Foods and the Environment

  • Bullerman, Lloyd-B.
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.22 no.3
    • /
    • pp.359-366
    • /
    • 1993
  • Molds are eucaryotic, multicellular, multinucleate, filamentous organisms that reproduce by forming asexual and sexual spores. The spores are readily spread through the air and because they are very light-weight and tend to behave like dust particles, they are easily disseminated on air currents. Molds therefore are ubiquitous organisms that are found everywhere, throughout the environment. The natural habitat of most molds is the soil where they grow on and break down decaying vegetable matter. Thus, where there is decaying organic matter in an area, there are often high numbers of mold spores in the atmosphere of the environment. Molds are common contaminants of plant materials, including grains and seeds, and therefore readily contaminate human foods and animal feeds. Molds can tolerate relatively harsh environments and adapt to more severe stresses than most microorganisms. They require less available moisture for growth than bacteria and yeasts and can grow on substrates containing concentrations of sugar or salt that bacteria can not tolerate. Most molds are highly aerobic, requiring oxygen for growth. Molds grow over a wide temperature range, but few can grow at extremely high temperatures. Molds have simple nutritional requirements, requiring primarily a source of carbon and simple organic nitrogen. Because of this, molds can grow on many foods and feed materials and cause spoilage and deterioration. Some molds ran produce toxic substances known as mycotoxins, which are toxic to humans and animals. Mold growth in foods can be controlled by manipulating factors such as atmosphere, moisture content, water activity, relative humidity and temperature. The presence of other microorganisms tends to restrict mold growth, especially if conditions are favorable for growth of bacteria or yeasts. Certain chemicals in the substrate may also inhibit mold growth. These may be naturally occurring or added for the purpose of preservation. Only a relatively few of the approximately 100,000 different species of fungi are involved in the deterioration of food and agricultural commodities and production of mycotoxins. Deteriorative and toxic mold species are found primarily in the genera Aspergillus, Penicillium, Fusarium, Alternaria, Trichothecium, Trichoderma, Rhizopus, Mucor and Cladosporium. While many molds can be observed as surface growth on foods, they also often occur as internal contaminants of nuts, seeds and grains. Mold deterioration of foods and agricultural commodities is a serious problem world-wide. However, molds also pose hazards to human and animal health in the form of mycotoxins, as infectious agents and as respiratory irritants and allergens. Thus, molds are involved in a number of human and animal diseases with serious implication for health.

  • PDF

Evaluation of optimal planting combination considering growth characteristics of major landscaping groundcover plants (조경용 주요 지피식물의 생장 특성을 고려한 식재조합 및 혼식 적합성 평가)

  • Han, Seung Won;Jang, Ha Kyung
    • Korean Journal of Environmental Biology
    • /
    • v.38 no.1
    • /
    • pp.197-205
    • /
    • 2020
  • With the purpose of designing companion planting of groundcover plants for ornamental uses, this study identified the yearly growth characteristics of nine species of different life forms, analyzed the coverage characteristics of individual plants, and suggested combinations of plants suitable for each life form. Polygonatum odoratum var. pluriflorum, Liriope platyphylla and Hosta capitata, as short-grained plants that can grow to more than 20 cm, tended to grow for 60 days after planting in April and maintain their shape thereafter. Their aerial parts started to wither and enter dormancy after September. Saxifraga stolonifera, Dianthus chinensis and Sedum middendorffianum tended to continuously grow until September after planting in April and their growth declined after September. Lysimachia nummularia, as a creeping plant that grows creeping on the ground, started to show a rapid growth three months after planting. Sedum sarmentosum grew slowly until August and the aerial parts started to wither from September when the temperature decreases. The coverage characteristics of these nine species that grow differently after companion planting were surveyed and the growth of Sedum sarmentosum showed the highest number of companions. It was found that Hosta capitata can be companion planted with Sedum middendorffianum, Saxifraga stolonifera, and Lysimachia nummularia. These results indicate that among different shoot growth types species propagated with their stems creeping on the ground or those that can grow vegetatively with non-rhizome parts are more suitable for companion planting with others than those of which rhizomes branch.