• Title/Summary/Keyword: grouting-reinforced body

Search Result 8, Processing Time 0.022 seconds

Comparative study on dynamic properties of argillaceous siltstone and its grouting-reinforced body

  • Huang, Ming;Xu, Chao-Shui;Zhan, Jin-Wu;Wang, Jun-Bao
    • Geomechanics and Engineering
    • /
    • v.13 no.2
    • /
    • pp.333-352
    • /
    • 2017
  • A comparison study is made between the dynamic properties of an argillaceous siltstone and its grouting-reinforced body. The purpose is to investigate how grout injection can help repair broken soft rocks. A slightly weathered argillaceous siltstone is selected, and part of the siltstone is mechanically crushed and cemented with Portland cement to simulate the grouting-reinforced body. Core specimens with the size of $50mm{\times}38mm$ are prepared from the original rock and the grouting-reinforced body. Impact tests on these samples are then carried out using a Split Hopkinson Pressure Bar (SHPB) apparatus. Failure patterns are analyzed and geotechnical parameters of the specimens are estimated. Based on the experimental results, for the grouting-reinforced body, its shock resistance is poorer than that of the original rock, and most cracks happen in the cementation boundaries between the cement mortar and the original rock particles. It was observed that the grouting-reinforced body ends up with more fragmented residues, most of them have larger fractal dimensions, and its dynamic strength is generally lower. The mass ratio of broken rocks to cement has a significant effect on its dynamic properties and there is an optimal ratio that the maximum dynamic peak strength can be achieved. The dynamic strain-softening behavior of the grouting-reinforced body is more significant compared with that of the original rock. Both the time dependent damage model and the modified overstress damage model are equally applicable to the original rock, but the former performs much better compared with the latter for the grouting-reinforced body. In addition, it was also shown that water content and impact velocity both have significant effect on dynamic properties of the original rock and its grouting-reinforced body. Higher water content leads to more small broken rock pieces, larger fractal dimensions, lower dynamic peak strength and smaller elastic modulus. However, the water content plays a minor role in fractal dimensions when the impact velocity is beyond a certain value. Higher impact loading rate leads to higher degree of fragmentation and larger fractal dimensions both in argillaceous siltstone and its grouting-reinforced body. These results provide a sound basis for the quantitative evaluation on how cement grouting can contribute to the repair of broken soft rocks.

Experimental study of strength characteristics of reinforced broken rock mass

  • Yanxu Guo;Qingsong Zhang;Hongbo Wang;Rentai Liu;Xin Chen;Wenxin Li;Lihai Zhang
    • Geomechanics and Engineering
    • /
    • v.33 no.6
    • /
    • pp.553-565
    • /
    • 2023
  • As the structure of broken rock mass is complex, with obvious discontinuity and anisotropy, it is generally necessary to reinforce broken rock mass using grouting in underground construction. The purpose of this study is to experimentally investigate the mechanical properties of broken rock mass after grouting reinforcement with consideration of the characteristics of broken rock mass (i.e., degree of fragmentation and shape) and a range of reinforcement methods such as relative strength ratio between the broken rock mass and cement-based grout stone body (λ), and volumetric block proportion (VBP) representing the volumetric ratio of broken rock mass and the overall cement grout-broken rock mass mixture after the reinforcement. The experimental results show that the strength and deformation of the reinforced broken rock mass is largely determined by relative strength ratio (λ) and VBP. In addition, the enhancement in compressive strength by grouting is more obvious for broken rock mass with spherical shape under a relatively high strength ratio (e.g., λ=2.0), whereas the shape of rock mass has little influence when the strength ratio is low (e.g., λ=0.1). Importantly, the results indicate that columnar splitting failure and inclined shear failure are two typical failure modes of broken rock mass with grouting reinforcement.

Determining of Ground Condition Criteria for Dam Reinforced RIM Grouting (댐체 강화 RIM부 그라우팅을 위한 지반상태 기준 결정)

  • Han, Kiseung;Lee, Donghyuk;Park, Duhee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.2
    • /
    • pp.181-186
    • /
    • 2022
  • Dam slope RIM is a highly important contact interface where the main body and the base surface are connected. In general, when the grouting for the slope of the dam structure is designed, it is planned using limited data (drilling, geological map, etc.). This makes it very difficult to accurately consider the original ground characteristics of the slope RIM grouting target, In addition, when the grouting volume planned during the design is drilled and injected into the original ground where the waterstop is secured, there is a possibility that the original ground with the waterstop is disturbed and the effect of the waterstop is rather diminished. In order to overcome such problems, it is more suitable to first consider geological conditions and determine whether to perform optimal grouting on the original ground through on-site repair tests before performing RIM grouting. In this paper, to determine the grouting of the RIM unit, a pilot hole water pressure test was performed on the rock of the slope in the target section. The analysis shows grouting volume of 1 Lugeon or less, and the cement injection amount also shows the injection result of 1 kg/m or less. In this case, performing grouting is rather counterproductive. This result can be evaluated through a rock of which some degree of order of mass is secured, as it is a dam design standard of 1 Lugeon or less when analyzed, using the results of visual observation and geological map creation during slope cutting. Therefore, in conclusion, it is preferable to make the decision for using RIM grouting on the slope of the dam body structure, based on 1 Lugeon in a rock state, and the cement injection amount also at 1 kg/m.

Evaluation of Field Application for the mix properties of the thixotropic grout (가소성그라우트의 배합특성 및 현장 적용성 평가)

  • Kim, Hak-Moon;Jang, Kyung-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.9
    • /
    • pp.4223-4238
    • /
    • 2011
  • The advantages of grouting are the simple instrument, the simple procedure of practice and the simple verification of grouting result. but the more grouting practice there is, the more damages of environment from grouting practice and grouting materials there are. so, the grouting materials and methods with the character of environment friendly are introduced in construction field, recently. This paper is to study of the physical characteristics that has thixotropic character and that consists of inorganic and polycarboxylate co-polymer. In study, various testing methods are performed such as a viscosity, a thixotropy, a compressive strength, a heavy metal detection and pH measurement in lab test and a low pressure injection test and a high pressure injection test in field with different soil type. As a result, a optimum mix ratio is proposed by analyzing the result of lab test. the field applicability is verified by checking a injection pressure, a grout volume and a hardened body of grout by excavating the practice site.

Reinforcement Effect of Marine Structure Foundation by Column Jet Method (CJM 그라우팅에 의한 호안구조물의 기초보강효과)

  • 천병식;양형칠
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.128-131
    • /
    • 2001
  • The purpose of this study is to investigate the application of Column Jet Method(CJM) as countermeasure against settlement and slope sliding of existing marine structure due to embankment load behind reclaimed revetment. CJM is to make high-strengthened body by compacting and grouting cement mortar after forming artificial space in the ground with ground relaxition machine or high pressure water jetting. Before the ground was reinforced by CJM, the result of slope stability analysis was not satisfy the allowable safe ratio, but after the ground was reinforced by CJM, the stability of slope was over the allowable safe ratio and stable, Therefor, the application of CJM to restraint settlement and sliding of marine structure was very satisfactory.

  • PDF

A numerical study of pillar reinforcing effect in underground cavern underneath existing structures (지하공간하부 지하저류공동에서의 필라 보강효과에 관한 수치해석적 연구)

  • Seo, Hyung-Joon;Lee, Kang-Hyun;Han, Shin-In;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.5
    • /
    • pp.453-467
    • /
    • 2012
  • Usage of underground space is increasing at metropolitan city. More than 90% of flood damages have occurred at downtown of metropolitan cities. In order to prevent and/or minimize the flood-induced damage, an underground rainwater detention cavern was proposed to be built underneath existing structures. As for underground caverns to be built for flood control, multi-caverns will be mostly adopted rather than one giant cavern because of stability problem. Because of the stress concentration occurring in the pillars between two adjacent caverns, the pillar-stability is the Achilles' heel in multi-caverns. So, a new pillar-reinforcing technology was proposed in this paper for securing the pillar-stability. In the new pillar-reinforcing technology, reinforced materials which are composed of a steel bar and PC strands are used by applying pressurized grouting, and then, by applying the pre-stress to the PC strands and anchor body. Therefore, this new technology has an advantage of utilizing most of the strength that the in-situ ground can exert, and not much relying on the pre-cast concrete structure. The main effect of the pressurized grouting is the increase of the ground strength and more importantly the decrease of stress concentration in the pillar; that of the pre-stress is the increase of the ground strength due to the increase of the internal pressure. In this paper, ground reinforcing effects were verified the stress change in pillar is obtained by numerical analysis at each construction stage. From these results, the effects of pressurized grouting and pre-stress are verified.

Shear Resisting Effects of Protruded Nails by Pressure Grouting (가압식 돌기네일의 전단저항 효과)

  • Hong, Cheorhwa;Lee, Sangduk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.7
    • /
    • pp.13-20
    • /
    • 2017
  • Soil nailing is ground reinforcement method using the shear strength of ground and the pullout shear resistance force of nail. It is mainly used for reinforcement of cut slopes, earth retaining structures and retaining walls, etc. It may be designed considering the pullout resistance of nail in the case of earth retaining structure and retaining wall, but it should be designed considering not only pullout resistance but also shear and bending resistance in the case of slope. However, conservative designs considering only pullout resistance are being done and most of the studies are about increasing pullout resistance by improving of material, shape and construction method of nail. Actually, Shear bending deformations occur centering on the active surface in ground reinforced with the nail. The grout with relatively low strength is destroyed and separated from the reinforcing material. As a result, the ground is collapsed while reducing the frictional resistance rapidly. Therefore, it is necessary to develop the method to increase the shear resistance while preventing separation of nail and grout body. In this study, an experimental study was conducted on new soil nailing method which can increase shear resistance by forming protrusions through pressurized grouting after installing a packer on the outside of deformed bar.

Pullout Characteristics of MC Anchor in Shale Layer (셰일지반에 설치된 MC앵커의 인발특성)

  • Lee, Bongjik;Kim, Josoon;Lee, Jongkyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.1
    • /
    • pp.53-61
    • /
    • 2012
  • In this study, the research on MC anchor has been developed as composite type has done. MC anchor exerts bearing pressure on pre-bored hole where the end fixing device is expanded. Therefore, the uplift capacity is to be increased and it has the characteristics that the anchor body is not eliminated from the ground even if the grouting is not carried out properly. Furthermore, it reduces the loss of tension and raises the construction availability by inserting the reinforced bar as well as the anchor cable, while it can improve the long-term stability because the nail is expected to play the role when the loss of the anchor cable is occurred in a long-term. However, because the resistance mechanism of the compound anchor such as MC anchor is different from friction anchor, the estimation method of the uplift capacity by the frictional force of the ground and the grout is not proper. Particularly, in domestic cases, the problem to overestimate or underestimate the uplift capacity is expected because the design method considering the soil characteristics about the compound anchor has not been developed. Therefore, in this study, in order to evaluate the characteristics of MC anchor and a kind of compound anchor, we measured the uplift, the tension and the creep by nine anchors tests in shale ground that the fluctuation of the strength is great. In addition, we analyzed the test result comparing to the result of the general friction anchor and evaluated the characteristics of MC anchor movement to gather the results. As a result of the test, we found the effect that the uplift capacity is increased in shale ground comparing to the general friction anchor.