• Title/Summary/Keyword: grouting reinforcement

Search Result 210, Processing Time 0.025 seconds

Load transfer characteristics and bearing capacity of micropiles (마이크로파일의 하중전이특성 및 지지성능 분석)

  • Goo, Jeong-Min;Choi, Chang-Ho;Cho, Sam-Deok;Lee, Ki-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.899-904
    • /
    • 2009
  • This paper presents the analysis result of load-transfer mechanism and pile movements associated with the development of frictional resistance to understand the engineering characteristics of micropile behavior. An field load tests were performed for two different types of micropiles and they are (i) thread bar reinforcement with D=50mm and (ii) hollow steel pipe reinforcement with $D_{out}$=82.5mm and $D_{in}$=60.5mm and wrapped with woven geotextile for post-grouting. The load test results indicated that micropiling with pressured grouting provided better load-transfer characteristics than micropiling with gravity grouting under both compressive and tensile loading conditions in that unit skin frictional resistance is well distributed along installation depth. The unit weight and unconfined compressive strength of cured grout were obtained for each piling method. The strength and unit weight of micropile with pressured grouting was higher than those with gravity grouting. The fact that load bearing quality with pressured grouting is better than that of gravity grouting could be attributed to the dense mutual adhesion between surrounding ground and pile due to pressurized grouting method and better grout quality.

  • PDF

A study on the field application of high strength steel pipe reinforcement grouting (고강도 강관 보강 그라우팅의 현장 적용성에 관한 연구)

  • Shin, Hyunkang;Jung, Hyuksang;Ryu, Yongsun;Kim, Donghoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.4
    • /
    • pp.455-478
    • /
    • 2019
  • In this paper, we conducted experimental investigation on the field applicability through the verification of reinforcement effect of the steel pipe reinforcement grouting using high strength steel pipe. SGT275 (formerly known as STK400) steel pipe is generally applied to the traditional steel pipe reinforcement grouting method. However, the analysis of tunnel collapse cases applying the steel pipe reinforcement grouting shows that there are cases where the excessive bending and breakage of steel pipe occur. One of the reasons causing these collapses is the lack of steel pipe stiffness responding to the loosening load of tunnels caused by excavation. The strength of steel pipe has increased due to the recent development of high strength steel pipe (SGT550). However, since research on the reinforcement method considering strength increase is insufficient, there is a need for research on this. Therefore, in this study, we conducted experiments on the tensile and bending strength based on various conditions between high strength steel pipe, and carried out basic research on effective field application depending on the strength difference of steel pipe through the conventional design method. In particular, we verified the reinforcement effect of high strength steel pipe through the measurement results of deformed shape and stress of steel pipe arising from excavation after constructing high strength steel pipe and general steel pipe at actual sites. The research results show that high strength steel pipe has excellent bending strength and the reinforcement effect of reinforced grouting. Further, it is expected that high strength steel pipe will have an arching effect thanks to strength increase.

A Case Study of Analysis and Design for the Tunnel Stablization in Fault Zone by FRP Reinforced Grouting Method (FRP보강 그라우팅에 의한 단층대의 터널 안정성 분석 및 설계 사례 연구)

  • 박종호;최용기;박영목;권오엽;이재봉
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.121-128
    • /
    • 2001
  • This is a case study of stability analysis and reinforcement design for the tunnel where the collapse of the entrance slops occured along the fault zone developed in the bed rock. According to the site investigation, the main factor of sliding is the influence of fault gouge and heavy rainfall. Considering the in-situ condition, the versatile reinforcement methods is needed, and so the close investigation on the site area was accompanied with the stability analysis of tunnel and slops. The FRP(Fiberglass reinforced plastic) grouting method improved the defect of Steel Umbrella Arch Method, such as oxidation, low work efficiency, the material's heavy weight, is adapted as the reinforcement methods.

  • PDF

Pillar stability in very near-twin tunnels (초근접 병설터널의 필라 안정성 확보)

  • Kim, Donggyou;Koh, Sungyil;Lee, Jeongyong;Lee, Chulhee
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.699-714
    • /
    • 2022
  • The objective of this study is to suggest a safe and economical pillar reinforcement method when very near-twin tunnels with a minimum interval of 1 m passes through a soft zone such as weathered soil or weathered rock. A standard cross-sectional view of a two-lane road tunnel was applied to suggest a pillar reinforcement method for the very near-twin tunnels. The thickness of the pillar was 1 m. The ground condition around the tunnel was weathered soil or weathered rock. There were four reinforcement methods for pillar stability evaluation. These were rock bolt reinforcement, pre-stressed steel strand reinforcement, horizontal steel pipe grouting reinforcement, horizontal steel pipe grouting + prestressed steel strand reinforcement. When the ground condition was weathered soil, only the pillar reinforced the horizontal steel pipe grouting + prestressed steel strand did not failed. When the ground condition was weathered rock, there were no failure of the pillar reinforced the horizontal steel pipe grouting or the horizontal steel pipe grouting + prestressed steel strand. It is considered that the horizontal steel pipe grouting reinforcement played a role in increasing the stability of the upper part of the pillar by supporting the upper load applied to the upper part of the pillar.

Analysis on the effect of strength improvement and water barrier by tunnel grouting reinforcement (터널 그라우팅 보강에 의한 차수 및 강도 증가효과의 분석)

  • You, Kwang-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.4
    • /
    • pp.291-304
    • /
    • 2011
  • Recently concern for subsea tunnels is increasing, The effect of high water pressure can not be ignored in the case of a deep subsea tunnel. Reinforcement like grouting is necessary for the stability of such a subsea tunnel. In this study, therefore, it was investigated how the water barrier and shear strength increment resulted from grouting had an effect on the stability of a subsea tunnel. To this end, two-dimensional hydromechanical coupled analyses were performed for a sensitivity analysis in terms of different range, permeability coefficient, and cohesion of grouting reinforcement for the rock classes I, III, and V with respect to RMR system. The mutual relationship between strength increment and water pressure increased by barrier effect due to grouting was investigated by analyzing the numerical results.

A Study on the Application of Chemical Grouting Method for Aging Reservoir Reinforce According to the Change of Binder and Using Water (결합재 및 사용수 변화에 따른 노후저수지 보강용약액주입공법 적용에 관한 연구)

  • Song, Sang-Hwon;Seo, Se-Gwan
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.21 no.4
    • /
    • pp.45-52
    • /
    • 2019
  • Chemical grouting method is mainly used for construction of dams and reservoirs, stabilization and reinforcement of slopes, reinforcement of soft grounds such as embankments, dredging and landfills, the order of earthquake response method, and the reinforcement of structures. Recently, it is widely applied in construction sites such as highways, airfields, high-speed railways, subsea facilities, port construction works, tunnels, and subway works. As such, the demand for grouting continues to increase. The development of the grouting method was focused on increasing the strength of the ground, and the development of the chemical additives, the injection device, and the stirring device were mainly performed. But ordinary portland cement used for grouting is a product that consumes natural resources such as limestone, generates a large amount of greenhouse gases, consumes a large amount of energy sources, and it is time to develop products and new methods to replace them. In this study, Ordinary Portland Cement and New Grouting Binder (circulating fluidized bed boiler fly and blast furnace slag) were compared and analyzed by the following test. Homo-gel strength and homo-gel time, water quality analysis of the water used and soil contamination process tests of homo-gel samples were performed. In the case of NGB, when Using water is used as the reservoir water, the strength measured smaller than that of the other water. However, it shows about 2.5 times greater than the homo-gel compressive strength applied to OPC (7-day, reservoir water), so there is no problem with water quality when applied.

Case Studies on Ground Improvement by High Pressure Jet Grouting(II) Effect on the Ground Reinforcement and Cut off of Ground Water Behind Temporary Retaining Walls (고압분사주입공법에 의한 지반개량사례연구(II) -흙막이벽 배면지반보강 및 차수효과)

  • Yun, Jung-Man;Hong, Won-Pyo;Jeong, Hyeong-Yong
    • Geotechnical Engineering
    • /
    • v.12 no.5
    • /
    • pp.5-16
    • /
    • 1996
  • When braced excavation with temporary retaining wall installation, is performed in loose sand with high ground water level boiling may be induced and considerable damage on the excavation works and structures in the vicinity can take place. Recently, for the purpose of reinforcement of ground and cut-off of ground water behind the temporary retaining wall, high pressure jet grouting is widely used. The purpose of this paper is to investigate the effects of jet grouting on ground reinforcement and cut -off of the ground water behind temporary retaining walls for braced excavation. A series of both laboratory and field tests has been performed. The test results show that high pressure jet grouting has sufficient effects on reinforcement of stiffness of ground and retaining wall. The permeability of the improved ground was 10-f_ 10-3cm l s smaller than those of the original ground. Therefore, the effect on cut off of ground water behind temporary retaining walls could be improved by high pressure jet grouting method.

  • PDF

Experimental study of strength characteristics of reinforced broken rock mass

  • Yanxu Guo;Qingsong Zhang;Hongbo Wang;Rentai Liu;Xin Chen;Wenxin Li;Lihai Zhang
    • Geomechanics and Engineering
    • /
    • v.33 no.6
    • /
    • pp.553-565
    • /
    • 2023
  • As the structure of broken rock mass is complex, with obvious discontinuity and anisotropy, it is generally necessary to reinforce broken rock mass using grouting in underground construction. The purpose of this study is to experimentally investigate the mechanical properties of broken rock mass after grouting reinforcement with consideration of the characteristics of broken rock mass (i.e., degree of fragmentation and shape) and a range of reinforcement methods such as relative strength ratio between the broken rock mass and cement-based grout stone body (λ), and volumetric block proportion (VBP) representing the volumetric ratio of broken rock mass and the overall cement grout-broken rock mass mixture after the reinforcement. The experimental results show that the strength and deformation of the reinforced broken rock mass is largely determined by relative strength ratio (λ) and VBP. In addition, the enhancement in compressive strength by grouting is more obvious for broken rock mass with spherical shape under a relatively high strength ratio (e.g., λ=2.0), whereas the shape of rock mass has little influence when the strength ratio is low (e.g., λ=0.1). Importantly, the results indicate that columnar splitting failure and inclined shear failure are two typical failure modes of broken rock mass with grouting reinforcement.

Investigation of the Optimum Injection Pressure in Pressure Grouting by Laboratory Model Tests (모형시험을 통한 지반보강 그라우팅의 적정주입압력 연구)

  • 박종호;박용원
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.217-225
    • /
    • 2003
  • The ground reinforcement effect of pressure grouting depends on grout penetration into ground. It is not, however, easy to predict the grout penetration in the design process because of the heterogeneity of ground conditions. This study investigates the proper grouting pressure and grouting method through laboratory model tests for pressure grouting using loose to medium dense crushed rock and sandy ground using specially designed and fabricated device. The optimum injection pressure, grout quantity and injection time are investigated through performing pressure grouting under changing conditions of injection in this test. From the test results, it was found that optimum injection pressure covers the range of 3 to 4kg/cm$^2$.

A Study on the P~q~t Charts Applicability for Quality Improvement of Water-Sealing&Reinforcement Grouting in Tunneling Work Underneath the City (도심지 지하 터널시공 중 차수·보강 그라우팅 공사의 품질향상을 위한 P~q~t charts 적용성 연구)

  • Kim, Jin-Chun;Kim, Seok-Hyun;Yoo, Byung-Sun;Kang, Hee-Jin
    • Journal of Korean Society of Disaster and Security
    • /
    • v.14 no.3
    • /
    • pp.51-63
    • /
    • 2021
  • This study is for the quality improvement of water-sealing & reinforcement grouting in tunnel of the construction of the underground transportation network underneath the city. Existing tunnel grouting process did not technically utilize P~q~t charts fully. It is due to the absence of technical methods to decide how P~q~t charts change in the presence of trouble and what the change represents in grouting. There were no standards to decide which chart pattern represents which ground characteristics, how to categorize ground types, and how to take measures according to the standards. This paper studies on the grouting type, ground characteristics, ground type categorizing method, and countermeasures for both general and algorithm-processed grouting in soil and rock layer to address the aforementioned problems. Newly improved P~q~t charts from grouting in soil was categorized into six different types. Different characteristics and categorization method was developed for each type. Countermeasures for each type of grouting process were developed so that on-site application can be readily available. Improved P~q~t charts for rock layer also have six different types of grouting. Each type was given the countermeasures for rock layer grouting process for easier applications. Therefore, it is expected to be used through out the entire process of grouting from preparation to the last report of the water-sealing & reinforcement grouting in tunnel of the construction of the underground transportation network underneath the city.