• Title/Summary/Keyword: grouting pressure

Search Result 200, Processing Time 0.034 seconds

An Experimental Study on Grouting Effect for Ground Reinforcement (지반보강 그라우팅 효과에 관한 실험적 연구)

  • Park, Yong-Won;Lee, Goo-Young;Park, Jong-Ho;Hong, Sung-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.399-406
    • /
    • 2004
  • This paper is experimental study on the effect of improved soil strength which was grouted by pressure grouting method for prevent collapse the tunnel's face during excavate tunnel. This study performs to investigate the proper grouting pressure and grouting method through pressure grouting laboratory model tests using loose dense sandy soil using specially designed and fabricated device($180cm{\times}220cm{\times}300cm$) under changing condition of injection in this test The investigation is carried out through measuring the size and shape of grout bulb, elastic modulus by pressure-meter test Elastic modulus was estimated using relation stress with strain which is result the uni-direction compressive strength test for cured grouted bulb under water during 28days. From these test results, the amount of increased elastic modulus of grouted zone was suggested.

  • PDF

Experimental investigation of blocking mechanism for grouting in water-filled karst conduits

  • Zehua Bu;Zhenhao Xu;Dongdong Pan;Haiyan Li;Jie Liu;Zhaofeng Li
    • Geomechanics and Engineering
    • /
    • v.34 no.2
    • /
    • pp.155-171
    • /
    • 2023
  • Aiming at the grouting treatment of water inflow in karst conduits, a visualized experiment system for conduit-type grouting blocking was developed. Through the improved water supply system and grouting system, and the optimized multisource information monitoring system, the real-time observation of diffusion and deposition of slurry, and the data acquisition of pressure and velocity during the whole process of grouting were realized, which breaks through the problem that the monitoring element is easy to fail due to slurry adhesion in conventional test system. Based on the grouting experiments in static and flowing water, the diffusion and deposition behavior of the quick-setting slurry under different working conditions were analyzed. The temporal and spatial variation behavior of the pressure and velocity were studied, and the blocking mechanism of the grouting were further revealed. The results showed that: (1) Under the flowing water condition, the counter-flow diffusion distance of slurry was negatively correlated with the flow water velocity and the volume ratio of cement and sodium silicate (C-S ratio), and positively correlated with the grouting volume. The slurry deposition thickness was negatively correlated with the flowing water velocity, and positively correlated with the grouting volume and C-S ratio. (2) The pressure increased slowly before blocking of the flowing water and rapidly after blocking in karst conduits. (3) With the continuous progress of grouting, the flowing water velocity decreased slowly first, then significantly, and finally tended to be stable. According to the research results, some engineering recommendations were put forward for the grouting treatment of the conduit-type water inflow disaster, which has been successfully applied in the treatment project of the China Resources Cement (Pingnan) Limestone Mine. This study provided some guidance and reference for the parameter optimization of grouting for the treatment projects of water inflow in karst conduits.

Case Studies on Ground Improvement by High Pressure Jet Grouting(I) Effect in the Improvement of Bearing Capacity for Foundation Ground (고압분사주입공법에 의한 지반개량사례연구(I) -구조물 기초지반의 지지력증대효과)

  • Yun, Jung-Man;Hong, Won-Pyo;Yu, Seung-Gyeong
    • Geotechnical Engineering
    • /
    • v.12 no.4
    • /
    • pp.33-46
    • /
    • 1996
  • When structures are constructed in ground with poor bearing capacity, deformation of ground may induce foundation settlements and cracks of structures. Recently, high pressure jet grouting is widely used to improve the engineering properties of such foundation. Sometimes, the grouting columns are built in the ground by jet grouting method. They are used as in -situ piles to increase the bearing capacity of existing foundation. In this paper, as for the grouting columns built in ground by high pressure jet grouting with double tube rod, the effects on reinforcement and bearing capacity of ground are investigated. A series of laboratory tests has been performed on the specimens sampled from the grouting columns and a pile load test has been performed on a grouting column. The test results show that high pressure jet grouting has a sufficient effect on reinforcement of ground and restraint of settlement of structure.

  • PDF

Numerical study for the optimum grouting design of subsea tunnels (해저터널의 그라우팅 최적 설계를 위한 수치해석적 연구)

  • Joo, Eun-Jung;Kim, Yong-Kye;Shin, Jong-Ho;Kwon, Oh-Yeob
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.5
    • /
    • pp.349-358
    • /
    • 2010
  • In the long-term, most tunnels suffer from the increase in ground water inflow and in pore water pressure on the lining. To reduce such hydraulic effect, generally grouting methods are adopted. In this paper effective grouting design is proposed based on numerical simulation. To investigate the optimal grouting layout, factors such as relative permeability, grouting thickness, and distance from the lining are considered. The results are analysed in terms of pore water pressure, inflow rate, and earth pressure. It is revealed that the pore water pressure has increased with a decrease in grout permeability, an increase in grouting thickness and an increase in grouting distance. Meanwhile the inflow rate has decreased with a decrease in grout permeability and is inversely proportional to grouting thickness. Effective grouting design guideline are proposed based on this study.

An experimental study on the improving reliability of grouting by using p-q-t chart analyzing technique (P-q-t chart 분석기법을 이용한 그라무팅 신뢰성 향상 방안에 관한 실험적 연구)

  • Chon, Byung-Sik;Choi, Dong-Chan;Kim, Jin-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.4
    • /
    • pp.383-395
    • /
    • 2008
  • The grouting is one of the improved techniques which is aim to decrease the permeability and to strengthen the soft ground. But The grouting method has many problems about a suitability of grouting procedure and an effectiveness of grouting after grouting work because of a technical characteristic operated inside the soil. The grouting $p{\sim}q{\sim}t$ chart of a typical index about grouting rate and time alteration of grouting pressure is one method to estimate the suitability of grouting factor with monitoring during grouting procedure. This study is automatic grouting system (AGS) which can control the testing and grouting procedures. It can make the detailed $p{\sim}q{\sim}t$ chart and analyze the grouting characters of the ground by comparing the detailed pattern of $p{\sim}q{\sim}t$ chart with standard pattern. If using the $p{\sim}q{\sim}t$ chart derived from AGS in the grouting work, it is an objective standard estimating the suitability of grouting factor with grouting materials, grouting method, grouting rate and grouting pressure, as results it expects successfully to improve reliability of the grouting work.

  • PDF

Evaluating analytical and statistical models in order to estimate effective grouting pressure

  • Amnieh, Hassan Bakhshandeh;Masoudi, Majid;Karbala, Mohammdamin
    • Computers and Concrete
    • /
    • v.20 no.3
    • /
    • pp.275-282
    • /
    • 2017
  • Grouting is an operation often carried out to consolidate and seal the rock mass in dam sites and tunnels. One of the important parameters in this operation is grouting pressure. In this paper, analytical models used to estimate pressure are investigated. To validate these models, grouting data obtained from Seymareh and Aghbolagh dams were used. Calculations showed that P-3 model from Groundy and P-25 model obtained from the results of grouting in Iran yield the most accurate predictions of the pressure and measurement errors compared to the real values in P-25 model in this dams are 12 and 14.33 Percent and in p-3 model are 12.25 and 16.66 respectively. Also, SPSS software was applied to define the optimum relation for pressure estimation. The results showed a high correlation between the pressure with the depth of the section, the amount of water take, rock quality degree and grout volume, so that the square of the multiple correlation coefficient among the parameters in this dams were 0.932 and 0.864, respectively. This indicates that regression results can be used to predict the amount of pressure. Eventually, the relationship between the parameters was obtained with the correlation coefficient equal to 0.916 based on the data from both dams generally and shows that there is a desirable correlation between the parameters. The outputs of the program led to the multiple linear regression equation of P=0.403 Depth+0.013 RQD+0.011 LU-0.109 V+0.31 that can be used in estimating the pressure.

Pile tip grouting diffusion height prediction considering unloading effect based on cavity reverse expansion model

  • Jiaqi Zhang;Chunfeng Zhao;Cheng Zhao;Yue Wu;Xin Gong
    • Geomechanics and Engineering
    • /
    • v.37 no.2
    • /
    • pp.97-107
    • /
    • 2024
  • The accurate prediction of grouting upward diffusion height is crucial for estimating the bearing capacity of tip-grouted piles. Borehole construction during the installation of bored piles induces soil unloading, resulting in both radial stress loss in the surrounding soil and an impact on grouting fluid diffusion. In this study, a modified model is developed for predicting grout diffusion height. This model incorporates the classical rheological equation of power-law cement grout and the cavity reverse expansion model to account for different degrees of unloading. A series of single-pile tip grouting and static load tests are conducted with varying initial grouting pressures. The test results demonstrate a significant effect of vertical grout diffusion on improving pile lateral friction resistance and bearing capacity. Increasing the grouting pressure leads to an increase in the vertical height of the grout. A comparison between the predicted values using the proposed model and the actual measured results reveals a model error ranging from -12.3% to 8.0%. Parametric analysis shows that grout diffusion height increases with an increase in the degree of unloading, with a more pronounced effect observed at higher grouting pressures. Two case studies are presented to verify the applicability of the proposed model. Field measurements of grout diffusion height correspond to unloading ratios of 0.68 and 0.71, respectively, as predicted by the model. Neglecting the unloading effect would result in a conservative estimate.

Laboratory Test for the Performance of Grouting under Hydrostatic Pressure (정수압을 고려한 그라우팅의 성능에 대한 실험적 연구)

  • Jun, Kyoung-Jea;Oh, Myounghak;Yune, Chan-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.10
    • /
    • pp.49-58
    • /
    • 2017
  • Grouting for soil improvement has generally been applied to the depth over water table. Recently, it is needed to develop the grouting technique for soils under greater static water pressure or greater overburden pressure in constructions such as deep excavation or harbour deepening. In this study, a laboratory apparatus was developed to control the injection pressure, load pressure, and hydrostatic pressure. A series of experiments were performed with various degrees of hydrostatic pressure using the developed equipment. As a result, injected volume increase as injection pressure increase, while the volume significantly decreased under hydrostatic pressure. Larger volume of grout bulb was shown in soils with larger granular and pore size based on the comparison result of volume changes with respect to the amount of grouting injection.

Pullout Resistance Increase in Soil-Nailing with Pressurized Grouting: Verification of Theoretical Solution (압력식 쏘일네일링의 인발저항력 증가: 이론적 검증)

  • Seo, Hyung-Joon;Park, Sung-Won;Jeong, Kyeong-Han;Choi, Hang-Seok;Lee, In-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.419-433
    • /
    • 2009
  • Pressure grouting is a common technique in geotechnical engineering to increase the stiffness and strength of the ground mass and to fill boreholes or void space in a tunnel lining and so on. Recently, the pressure grouting has been applied to a soil-nailing system which is widely used to improve slope stability. The soil-nailing design has been empirically performed in most geotechnical applications because the interaction between pressurized grouting paste and the adjacent ground mass is complicated and difficult to analyze. The purpose of this study is to analyze the increase of pullout resistance induced by pressurized grouting with the aid of performing laboratory model tests and field tests. In this paper, two main causes of pullout resistance increases induced by pressurized grouting were verified: the increase of residual stress; and the increase of coefficient of pullout friction. From the laboratory tests, it was found that residual stress in borehole increases by pressurized grouting and dilatancy angle could be estimated by cavity expansion theory using the measured wall displacements. From the field test results, the pullout resistance of soil-nailing with pressurized grouting was found to be 10% larger than that of soil-nailing with gravitational grouting, mainly caused by mean normal stress increase and dilatancy effect. So, the pullout resistance could be estimated by considering these two effects. The radial displacement increases with dilatancy angle increase and the dilatancy angle decreases with injection pressure increase. The measured pullout resistance obtained from field tests is in good agreement with the estimated one from the cavity expansion theory.

  • PDF

Pullout Characteristics of Pressure Reinjection-Grouted Reinforcements in Clay (점성토 지반에 설치된 압력재주입 그라우팅 보강재의 인발특성)

  • Seo, Jungwon;Kim, Nara;Lee, Bongjik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.9
    • /
    • pp.83-89
    • /
    • 2012
  • Anchor, soil nail and micropile have been widely used for slope reinforcement and foundation. These all methods need grouting work after placing reinforcing member. The pressure injection-grouting techniques helps to increase the bearing capacity of reinforcing member by enhancing larger effective pile diameter and increasing the radial stresses acting on the grout body and causing irregular surface. However, the pressure reinjection-grouting techniques is not commonly used because grouting equipment and practical application example are short and the verification of reinforcing effect is difficult. In this study, the laboratory test was performed to evaluate the reinforcing effect with variation of grouting methods in clay. As a result of the test, the pressure reinjection-grouting techniques showed that the pullout capacity of reinforcing member increased up to 1.22~2.61 times comparing to the gravity fill techniques.