• Title/Summary/Keyword: grouting performance

Search Result 97, Processing Time 0.02 seconds

Performance of Shotcrete Lining due to Tunneling and Groundwater Interaction Using a 3D Stress-pore Pressure Coupled Analysis (응력-간극수압 3차원 연계해석을 이용한 터널시공과 지하수의 상호작용으로 인한 라이닝 거동특성 연구)

  • Yoo, Chung-Sik;Kim, Sun-Bin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.465-474
    • /
    • 2005
  • This paper presents the interaction effect between tunneling and groundwater on tunnel behavior. A parametric study is then conducted on the various tunneling situations frequently encountered in Seoul area using a 3D stress-pore pressure coupled finite-element model with emphasis on the effects of ground and lining permeabilities. It is shown that the ground and lining responses are significantly influenced by the relative permeability between the ground and the lining, and that the circumferential pre-grouting is effective in minimizing the tunnelling and groundwater interaction.

  • PDF

Classification of Alkali Activated GGBS Mortar According to the Most Suitable Usage at the Construction Site

  • Thamara, Tofeti Lima;Ann, Ki Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.56-63
    • /
    • 2020
  • The usage of OPC-free alkali activated ground granulated blast furnace slag(GGBS) mortar has been widely studied on the previous years, due to its advantages on sustainability, durability and workability. This paper brings a new view, aiming to classify the best application in situ for each mortar, according to the type and activator content. By this practical implication, more efficiency is achieved on the construction site and consequently less waste of materials. In order to compare the different activators, the following experiments were performed: analysis of compressive strength at 28 days, setting time measured by needles penetration resistance, analysis of total pore volume performed by MIP and permeability assessment by RCPT test. In general, activated GGBS had acceptable performance in all cases compared to OPC, and remarkable improved durability. Following the experimental results, it was confirmed that each activator and different concentrations impose distinct outcome performance to the mortar which allows the classification. It was observed that the activator Ca(OH)2 is the most versatile among the others, even though it has limited compressive strength, being suitable for laying mortar, coating/plaster, adhesive and grouting mortar. Samples activated with NaOH, in turn, presented in general the most similar results compared to OPC.

Construction of Ground Effective Thermal Conductivity Database for Design of Closed-Loop Ground Heat Exchangers (밀폐형 지중열교환기 설계를 위한 지중 유효열전도도 데이터베이스 구축)

  • Choi, Jae-Ho;Sohn, Byong-Hu;Lim, Hyo-Jae
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.776-781
    • /
    • 2008
  • A ground heat exchanger in a GSHP system is an important unit that determines the thermal performance of a system and its initial cost. The Size and performance of this heat exchanger is highly dependent on the thermal properties. A proper design requires certain site-specific parameters, most importantly the ground effective thermal conductivity, the borehole thermal resistance and the undisturbed ground temperature. This paper is part of a research project aiming at constructing a database of these site-specific properties, especially ground effective thermal conductivity. The objective was to develop and evaluation method, and to provide this knowledge to design engineers. To achieve these goals, thermal response tests were conducted using a testing device at nearly 150 locations in Korea. The in-situ thermal response is the temperature development over time when a known heating load imposed, e.g. by circulating a heat carrier fluid through the test exchangers. The line-source model was then applied to the response test data because of its simplicity. From the data analysis, the range of ground effective thermal conductivity at various sites is $1.5{\sim}4.0\;W$/mK. The results also show that the ground effective thermal conductivity varies with grouting materials as well as regional geological conditions and groundwater flow.

  • PDF

Seismic Performance of Fabricated Internally Confined Hollow CFT Column (조립식 내부 구속 중공 CFT 기둥의 내진 성능)

  • Won, Deok Hee;Han, Taek Hee;Kim, Seungjun;Kang, Young Jong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.397-407
    • /
    • 2013
  • Recently, a great progress has been made in bridge construction technology through the development of high performance materials and new structural types. However, most of attention has been paid to the cast-in-place technologies and material cost saving. The cast-in-place method is always subject to some environmental damages in construction sites, which frequently causes conflicts with residents. To overcome the disadvantages, a lot of fabrication construction method was developed. Most fabrication construction methods developed up to now have been applied for superstructure of bridges. In contrast, such fabricable methods developed for substructures are extremely rare. A fabricated column using ICH CFT(Internally Confined Hollow CFT) column was developed in a series of previous researches. Included in the previous studies are design and construction methods for the precast segmental coping, the column-coping connection, the column-segment connection, column-foundation connection. In this paper, seismic performance of the fabricated ICH CFT columns was extensively investigated experimentally. Two test specimens were prepared depending on the connection methods of segments; one by mortar-grouting method and the other by reinforcement method using stiffeners.

Grouting Performance for the Reinforcement of Operating Railway Roadbed (운영 중인 철도노반 보강을 위한 그라우팅 성능)

  • Jung, Hyuk Sang;Han, Jin Kyu;Moon, Joon Shik;Yoon, Hwan Hee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.12
    • /
    • pp.13-23
    • /
    • 2017
  • This paper discusses about the reinforcement materials and construction method in order to cope with roadbed settlement in operating railway. In Korea, concrete tracks have been introduced to urban railways, high-speed railways, and general railways, but some recently constructed concrete tracks have experienced roadbed settlements. Reinforcement of the railway roadbed is urgent task for safe operation of railway, but it is difficult to reinforce the roadbed and there are no case history of reinforcing railway roadbed under an operating railroad track. Therefore, in this study, the target performance level for roadbed reinforcement was determined, and infiltration and solidity injection efficiency were investigated for selected reinforcement materials. As a result of the study, it was found that the generally used reinforcement materials and methods for geotechnical works need to be improved for applying in railway roadbed reinforcement.

Influence of Design Parameters of Grout Injection in Rock Mass using Numerical Analysis (암반 그라우팅 주입 설계변수가 주입성능에 미치는 영향의 수치해석적 평가)

  • Lee, Jong Won;Kim, Hyung Mok;Yazdani, Mahmoud;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.27 no.5
    • /
    • pp.324-332
    • /
    • 2017
  • In this paper, a numerical analysis of one-dimensional viscous fluid flow in a rock joint using UDEC code is performed to evaluate the effect of design parameters on injection performance. We consider injection pressure, fluid compressibility, time dependence of yield strength and viscosity of injected grout fluid, and mechanical deformation of joint as the design parameters, and penetration length and flow rate of injection are investigated as the injection performance. Numerical estimations of penetration length and flow rate were compared to analytical solution and were well comparable with each other. We showed that cumulative injection volume can be over-estimated by 1.2 times than the case that the time-dependent viscosity evolution is not considered. We also carried out a coupled fluid flow and mechanical deformation analysis and demonstrated that injection-induced joint opening may result in the increment of cumulative volume by 4.4 times of that from the flow only analysis in which joint aperture is kept constant.

Case study on construction and economic analysis of geothermal heat pump system (지열 시공 사례 및 동절기 경제성 분석)

  • Park, Chen-Kwan;Shin, Yang-Han;Woo, Ju-Sik;Jeong, Hyo-Min;Chung, Han-Shik
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.7 no.1
    • /
    • pp.17-22
    • /
    • 2011
  • Renewable energy is growing based on low-carbon green energy government policies. According to this policy, geothermal energy is highly efficient and environmental friendly energy which is being recently expanded. However, construction companies are generated disorderly but their ability has not been verified due to the poor geothermal facility which was reported in the media. In the this paper introduce on Busan region's largest geothermal facility, it was confirmed that thermal efficiency of the underground is close to heat exchanger performance. Therefore the study improving the efficiency of underground heat exchange found progressed. The results showed voids between borehole and ground heat exchanger should not be raised. And then geothermal facilities were installed very successfully through the principle grouting operation. As compared to the energy consumption on the basis of operating results energy usage was less than any other heat sources.

Application of Non-Alkaline Silica Sol Grouting Method Considering the Eco-Friendliness (친환경 비알칼리성 실리카졸 차수공법의 적용)

  • Jang, Yonggu;Kim, Sugyum;Kang, Injoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.9
    • /
    • pp.37-45
    • /
    • 2016
  • This study analyzes the environmental and durability problems of traditional (LW) grouting method. And the proposed method was compared to the others effects by analyzing the in-situ applicability and effect of performance of the method using the silica sol. This study analyzed the eco-friendly, effects of high strength silica sol through laboratory tests. The effects of the construction process were identified through the field tests. The compressive strength was increased by 1.3 times compared to the LW method and the shrinkage is 3~8 times less than that of LW method with water glass. No toxicity, which could affect soil contamination. In particular, it was confirmed that the Toxicity fish also survived with little pH change in the concentration tank. Also it confirmed the construction effects through field test. Field tests are a standard penetration test, permeability test, LLT, BST. Permeability was reduced to $1{\times}10^{-5{\sim}-6}cm/sec$.

Numerical Analysis on the Performance Evaluation of Cablebolts as Tunnel Supports (터널 지보재로서 케이블볼트의 성능평가에 관한 수치해석적 연구)

  • Park, Yeon-Jun;Park, Joon-Hyoung
    • Tunnel and Underground Space
    • /
    • v.22 no.2
    • /
    • pp.130-143
    • /
    • 2012
  • Cablebolts used to be employed as auxiliary supports where long or high capacity bolts are needed, but become competitive by the improvements in supportability and easiness in handling. Based on the test results obtained from various researches, the performance of the cablebolts was analyzed numerically while varying lengths and fixing conditions. The supporting effecte is assessed by monitoring displacements and stress taken place in shotcrete. When cablebolts are grouted without being tensioned, supporting effect was not as good as that of rockbolts. But, their supportability was good enough to substitute rockbolts if tensioned properly. Post grouting right after tensioning of the cablebolts shows reduction in supportability, but long term stability could be achieved without losing supportability if grouted when the bolt is far enough from the face. Further study is necessary including laboratory and in-situ tests under various conditions to use cablebolts as main support in tunnels.

Evaluation of Structural Performance the Hollow PC Column Joint Subjected to Cyclic Lateral Load (반복 횡하중을 받는 유공 PC 기둥 접합부의 구조성능 평가)

  • Seo, Soo-Yeon;Yoon, Seong-Joe;Lee, Woo-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.3
    • /
    • pp.335-343
    • /
    • 2008
  • In order to improve the workability in erecting Precast Concrete (PC) members and enhance the seismic resistance capacity of the joints in PC moment frames, a new PC column and its construction process are introduced in this paper. This column is manufactured by centrifugal force in keeping the hollow tube inside; the hollow is little bit wide and the grout can be poured from top to bottom after erection at site so that more compact grouting is possible in horizontal joint. The repeated cyclic loading test for four full scaled specimens was conducted to evaluate the seismic resistance capacity of the joint designed by the proposed system. For the continuity of main reinforcements in column, two connecting methods are used in designing specimens; one is to use mechanical connector and other is lab splice. From the cyclic lateral loading test, it was found that the seismic capacity of the developed PC column joint is comparable to that of monolithic joint.