• Title/Summary/Keyword: grouping algorithm

Search Result 317, Processing Time 0.026 seconds

Evaluation of the Effects of a Grouping Algorithm on IEEE 802.15.4 Networks with Hidden Nodes

  • Um, Jin-Yeong;Ahn, Jong-Suk;Lee, Kang-Woo
    • Journal of Communications and Networks
    • /
    • v.16 no.1
    • /
    • pp.81-91
    • /
    • 2014
  • This paper proposes hidden-node aware grouping (HAG) algorithm to enhance the performance of institute of electrical and electronics engineers (IEEE) 802.15.4 networks when they undergo either severe collisions or frequent interferences by hidden nodes. According to the degree of measured collisions and interferences, HAG algorithm dynamically transforms IEEE 802.15.4 protocol between a contention algorithm and a contention-limited one. As a way to reduce the degree of contentions, it organizes nodes into some number of groups and assigns each group an exclusive per-group time slot during which only its member nodes compete to grab the channel. To eliminate harmful disruptions by hidden nodes, especially, it identifies hidden nodes by analyzing the received signal powers that each node reports and then places them into distinct groups. For load balancing, finally it flexibly adapts each per-group time according to the periodic average collision rate of each group. This paper also extends a conventional Markov chain model of IEEE 802.15.4 by including the deferment technique and a traffic source to more accurately evaluate the throughput of HAG algorithm under both saturated and unsaturated environments. This mathematical model and corresponding simulations predict with 6%discrepancy that HAG algorithm can improve the performance of the legacy IEEE 802.15.4 protocol, for example, even by 95% in a network that contains two hidden nodes, resulting in creation of three groups.

The Optimal Column Grouping Technique for the Compensation of Column Shortening (기둥축소량 보정을 위한 기둥의 최적그루핑기법)

  • Kim, Yeong-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.2
    • /
    • pp.141-148
    • /
    • 2011
  • This study presents the optimal grouping technique of columns which groups together columns of similar shortening trends to improve the efficiency of column shortening compensation. Here, Kohonen's self-organizing feature map which can classify patterns of input data by itself with unsupervised learning was used as the optimal grouping algorithm. The Kohonen network applied in this study is composed of two input neurons and variable output neurons, here the number of output neuron is equal to the column groups to be classified. In input neurons the normalized mean and standard deviation of shortening of each columns are inputted and in the output neurons the classified column groups are presented. The applicability of the proposed algorithm was evaluated by applying it to the two buildings where column shortening analyses had already been performed. The proposed algorithm was able to classify columns with similar shortening trends as one group, and from this we were able to ascertain the field-applicability of the proposed algorithm as the optimal grouping of column shortening.

A Kernel Density Signal Grouping Based on Radar Frequency Distribution (레이더 주파수 분포 기반 커널 밀도 신호 그룹화 기법)

  • Lee, Dong-Weon;Han, Jin-Woo;Lee, Won-Don
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.6
    • /
    • pp.124-132
    • /
    • 2011
  • In a modern electronic warfare, radar signal environments become more denser and complex. Therefor the capability of reliable signal analysis techniques is required for ES(Electronic warfare Support) system to identify and analysis individual emitter signals from received signals. In this paper, we propose the new signal grouping algorithm to ensure the reliable signal analysis and to reduce the cost of the signal processing steps in the ES. The proposed grouping algorithm uses KDE(Kernel Density Estimator) and its CDF(Cumulative Distribution Function) to compose windows considering the statistical distribution characteristics based on the radar frequency modulation type. Simulation results show the good performance of the proposed technique in the signal grouping.

A Feature Analysis of Industrial Accidents Using C4.5 Algorithm (C4.5 알고리즘을 이용한 산업 재해의 특성 분석)

  • Leem, Young-Moon;Kwag, Jun-Koo;Hwang, Young-Seob
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.4 s.72
    • /
    • pp.130-137
    • /
    • 2005
  • Decision tree algorithm is one of the data mining techniques, which conducts grouping or prediction into several sub-groups from interested groups. This technique can analyze a feature of type on groups and can be used to detect differences in the type of industrial accidents. This paper uses C4.5 algorithm for the feature analysis. The data set consists of 24,887 features through data selection from total data of 25,159 taken from 2 year observation of industrial accidents in Korea For the purpose of this paper, one target value and eight independent variables are detailed by type of industrial accidents. There are 222 total tree nodes and 151 leaf nodes after grouping. This paper Provides an acceptable level of accuracy(%) and error rate(%) in order to measure tree accuracy about created trees. The objective of this paper is to analyze the efficiency of the C4.5 algorithm to classify types of industrial accidents data and thereby identify potential weak points in disaster risk grouping.

A study on the variations of a grouping genetic algorithm for cell formation (셀 구성을 위한 그룹유전자 알고리듬의 변형들에 대한 연구)

  • 이종윤;박양병
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.11a
    • /
    • pp.259-262
    • /
    • 2003
  • Group technology(GT) is a manufacturing philosophy which identifies and exploits the similarity of parts and processes in design and manufacturing. A specific application of GT is cellular manufacturing. the first step in the preliminary stage of cellular manufacturing system design is cell formation, generally known as a machine-part cell formation(MPCF). This paper presents and tests a grouping gentic algorithm(GGA) for solving the MPCF problem and uses the measurements of e(ficacy. GGA's replacement heuristic used similarity coefficients is presented.

  • PDF

Subscriber Grouping for Multi-Layered Location Registration Scheme in Microcellular PCS

  • Lee, Chae Y.;Kim, Seok J.
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.20 no.3
    • /
    • pp.61-75
    • /
    • 1995
  • In a microcellular personal communication service (PCS) it is required to minimize the paging and location updating signals. We propose a multi-layered location registration scheme to reduce the paging and updating signals. In this scheme the subscribers are grouped by their characteristics (velocity and call arrival rate) and are served by appropriately sized location registration area. In order to group the subscriber, we define subscriber grouping problem (SGP). Proposition are examined to solve the grouping problem. The performance of the proposed subscriber grouping algorithm is tested with examples. Simulation results indicate that the subscriber grouping procedure is effective for designing the multi-layered location registration scheme.

  • PDF

Time Complexity Analysis of MSP Term Groupting Algorithm for Binary Neural Networks (이진신경회로망에서 MSP Term Grouping 알고리즘의 Time Complexity 분석)

  • 박병준;이정훈
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.85-88
    • /
    • 2000
  • 본 논문은 Threshold Logic Unit(TLU)를 기본 뉴런으로 하여 최소화된 이진신경회로망을 합성하는 방법인 MSP Term Grouping(MTG) 알고리즘의 time complexity를 분석하고자 한다. 이를 전체 패턴 탐색을 통한 이진신경회로망 합성의 경우와 비교하여 MTG 알고리즘의 효용성을 보여준다.

  • PDF

Machine-Part Grouping with Alternative Process Plans (대체공정이 있는 기계-부품 그룹 형성)

  • Lee, Jong-Sub;Kang, Maing-Kyu
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.31 no.1
    • /
    • pp.20-26
    • /
    • 2005
  • This paper proposes the heuristic algorithm for the generalized GT problems to consider the restrictions which are given the number of machine cell and maximum number of machines in machine cell as well as minimum number of machines in machine cell. This approach is split into two phase. In the first phase, we use the similarity coefficient which proposes and calculates the similarity values about each pair of all machines and sort these values descending order. If we have a machine pair which has the largest similarity coefficient and adheres strictly to the constraint about birds of a different feather (BODF) in a machine cell, then we assign the machine to the machine cell. In the second phase, we assign parts into machine cell with the smallest number of exceptional elements. The results give a machine-part grouping. The proposed algorithm is compared to the Modified p-median model for machine-part grouping.

Generalized Clustering Algorithm for Part-Machine Grouping with Alternative Process Plans (대체가공경로를 가지는 부품-기계 군집 문제를 위한 일반화된 군집 알고리듬)

  • Kim, Chang-Ouk;Park, Yun-Sun;Jun, Jin
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.27 no.3
    • /
    • pp.281-288
    • /
    • 2001
  • We consider in this article a multi-objective part-machine grouping problem in which parts have alternative process plans and expected annual demand of each part is known. This problem is characterized as optimally determining part sets and corresponding machine cells such that total sum of distance (or dissimilarity) between parts and total sum of load differences between machines are simultaneously minimized. Two heuristic algorithms are proposed, and examples are given to compare the performance of the algorithms.

  • PDF

A self-organizing neural networks approach to machine-part grouping in cellular manufacturing systems (셀 생산 방식에서 자기조직화 신경망을 이용한 기계-부품 그룹의 형성)

  • 전용덕;강맹규
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.21 no.48
    • /
    • pp.123-132
    • /
    • 1998
  • The group formation problem of the machine and part is a very important issue in the planning stage of cellular manufacturing systems. This paper investigates Self-Organizing Map(SOM) neural networks approach to machine-part grouping problem. We present a two-phase algorithm based on SOM for grouping parts and machines. SOM can learn from complex, multi-dimensional data and transform them into visually decipherable clusters. Output layer in SOM network is one-dimensional structure and the number of output node has been increased sufficiently to spread out the input vectors in the order of similarity. The proposed algorithm performs remarkably well in comparison with many other algorithms for the well-known problems shown in previous papers.

  • PDF