• Title/Summary/Keyword: groundwater use and discharge

Search Result 40, Processing Time 0.029 seconds

An Integrated Water Budget Analysis of Oedocheon Watershed in Jeju Island (제주 외도천 유역의 통합 물수지 분석)

  • Kim, Nam Won;Chung, Il-Moon;Na, Hanna
    • Journal of Environmental Science International
    • /
    • v.24 no.4
    • /
    • pp.471-480
    • /
    • 2015
  • Hydrologic component analysis was conducted to investigate water budget characteristics the Oedocheon watershed, Jeju Island. For this purpose, integrated SWAT-MODFLOW model was applied to this watershed for continuous surface water-groundwater modeling. Pasture and forest-deciduous are the major land use types and these affect general hydrologic component ratio. The spatio-temporal groundwater recharge can be obtained from SWAT and then distributed groundwater recharge can be reproduced by MODFLOW. The groundwater level variation was simulated with distributed groundwater pumping data. The water budget in this watershed was compared with the previous estimated result by Jeju-Do(2013). As this result considered discharge to the coastal side, the discrepancy was found. However, it was found that the overall tendency of both analyses were similar.

Climate and Land use Changes Impacts on Hydrology in a Rural Small Watershed (장래 기후변화와 토지이용 변화에 따른 농촌소유역의 수문 영향 분석)

  • Kim, Hak-Kwan;Kang, Moon-Seong;Lee, Eun-Jeong;Park, Seung-Woo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.6
    • /
    • pp.75-84
    • /
    • 2011
  • The objective of this study is to evaluate the hydrologic impacts of climate and land use changes in a rural small watershed. HadCM3 (Hadley Centre Coupled Model, ver.3) A2 scenario and LARS-WG (Long Ashton Research Station - Weather Generator) were used to generate future climatic data. Future land use data were also generated by the CA-Markov (Cellular Automata-Markov) method. The Soil and Water Assessment Tool (SWAT) model was used to evaluate hydrologic impacts. The SWAT model was calibrated and validated with stream flow measured at the Baran watershed in Korea. The SWAT model simulation results agreed well with observed values during the calibration and validation periods. In this study, hydrologic impacts were analyzed according to three scenarios: future climate change (Scenario I), future land use change (Scenario II), and both future climate and land use changes (Scenario III). For Scenario I, the comparison results between a 30-year baseline period (1997~2004) and a future 30-year period (2011~2040) indicated that the total runoff, surface runoff, lateral subsurface runoff, groundwater discharge, and evapotranspiration increased as precipitation and temperature for the future 30-year period increased. The monthly variation analysis results showed that the monthly runoff for all months except September increased compared to the baseline period. For Scenario II, both the total and surface runoff increased as the built-up area, including the impervious surface, increased, while the groundwater discharge and evapotranspiration decreased. The monthly variation analysis results indicated that the total runoff increased in the summer season, when the precipitation was concentrated. In Scenario III, the results showed a similar trend to that of Scenario II. The monthly runoff for all months except October increased compared to the baseline period.

Feasibility of Hydraulic Fracturing for Securing Additional Saline Groundwater in the Land-based Aquaculture Farm (양식장 용수 추가 확보를 위한 수압파쇄 적용성 평가)

  • Lee, Byung Sun;Kim, Young In;Park, Hak Yun;Cho, Jung Hwan;Song, Sung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.7
    • /
    • pp.34-42
    • /
    • 2015
  • Feasibility tests for the hydraulic fracturing were conducted in order to secure additional saline groundwater for irrigating to the land-based aquaculture farm. Two boreholes were placed to the aquaculture farm A and B, respectively. A hydraulic fracturing using single packer was applied to major fracture zones within two boreholes. To identify effects of hydraulic fracturing on securing additional saline groundwater, some selective methods including well logging methods, pumping tests, and groundwater quality analysis were commonly applied to the boreholes before and after the hydraulic fracturing. Enlarging/creating fracture zones, increasing water contents in bedrock near boreholes, and increasing transmissivity were observed after the hydraulic fracturing. Even though the hydraulic fracturing could be an alternative to secure additional saline groundwater to the land-based aquaculture farm, salinity of the groundwater did not meet optimal thresholds for each fingerling in two farms: Fresh submarine groundwater discharge flowed the more into borehole of the farm A that resulted in decreasing a salinity value. Increased saline groundwater quantity in the borehole of the farm B rarely affect to the salinity. Although salinity problem of groundwater limited its direct use for the farms, the mixing with seawater could be effectively used for the fingerlings during the early stage. A horizontal radial collector well placed in the alluvial layer could be an alternative for the farms as well.

Development of a distributed hydrological model considering hydrological change

  • Kim, Deasik;An, Hyunuk;Jang, Minwon;Kim, Seongjoon
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.3
    • /
    • pp.521-532
    • /
    • 2018
  • In recent decades, the dry stream phenomena of small and medium sized rivers have been attracting much attention as an important social problem. To prevent dry stream phenomena, it is necessary to build an infrastructure that manages rivers. To accurately determine the progress of dry stream phenomena, it is necessary to continuously measure the discharge and other hydrological factors for small and medium sized rivers. However, until now, the flow data for small and medium rivers in Korea has been insufficient. To overcome the lack of supporting data for supporting rational decision-making in policy and project implementation, a short- and long-term hydrological model was developed that takes into consideration hydrological changes such as the increase of the impervious area due to urban development and groundwater pumping, the construction of a large-scale sewage treatment plant, the maintenance of stream-oriented rivers, etc. In the developed model, the distributed grid is represented by three layers: Surface flow, interflow, and groundwater flow. The surface flow and intermediate flow flowed along the flow direction, and the groundwater flow was calculated by a two-dimensional groundwater analysis model such that the outflow occurred in all directions without a specific flow direction. The effects of land use and cover on evapotranspiration and infiltration and the effects of multiple landscapes can be simulated in the developed model.

An Influence of Groundwater Flow on Performance of Closed Borehole Heat Exchangers (Part-1) (지하수류가 밀폐형 천공 지중열교환기 성능에 미치는 영향(1))

  • Hahn, Jeong Sang;Hahn, Chan;Yoon, Yun Sang;Kiem, Young Seek
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.3
    • /
    • pp.64-81
    • /
    • 2016
  • To analyze the influence of various groundwater flow rates (specific discharge) on BHE system with balanced and unbalanced energy loads under assuming same initial temperature (15℃) of ground and groundwater, numerical modeling using FEFLOW was used for this study. When groundwater flow is increased from 1 × 10−7 to 4 × 10−7m/s under balanced energy load, the performance of BHE system is improved about 26.7% in summer and 22.7% at winter time in a single BHE case as well as about 12.0~18.6% in summer and 7.6~8.7% in winter time depending on the number of boreholes in the grid, their array type, and bore hole separation in multiple BHE system case. In other words, the performance of BHE system is improved due to lower avT in summer and higher avT in winter time when groundwater flow becomes larger. On the contrary it is decreased owing to higher avT in summer and lower avT in winter time when the numbers of BHEs in an array are increased, Geothermal plume created at down-gradient area by groundwater flow is relatively small in balanced load condition while quite large in unbalanced load condition. Groundwater flow enhances in general the thermal efficiency by transferring heat away from the BHEs. Therefore it is highly required to obtain and to use adequate informations on hydrogeologic characterristics (K, S, hydraulic gradient, seasonal variation of groundwater temperature and water level) along with integrating groundwater flow and also hydrogeothermal properties (thermal conductivity, seasonal variation of ground temperatures etc.) of the relevant area for achieving the optimal design of BHE system.

Current status of Jeju special self-governing province's water infrastructure and direction for improvement (제주특별자치도 물인프라 현황 및 개선방향)

  • Kim, Jinkeun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.6
    • /
    • pp.497-505
    • /
    • 2021
  • This paper investigates the current status of Jeju special self-governing province (JSSGP)'s water infrastructure and recommends directions for improvement. JSSGP relies on groundwater for most of its water resources. Recently, water usage has been steadily increasing due to the increase of residents and tourists while the quality of groundwater has been steadily worsening. Deterioration in water quality of groundwater can be seen through the increase in concentration of nitrate nitrogen and microorganisms. To overcome such problems, water consumption must be reduced by water demand management in all fields including residential and agricultural water use. The quality of water resources should be preserved through the management of pollutants. For efficient management of water resources, great efforts should be made to reduce the leakage rates in household and agricultural water, which is currently at the highest level in the country. Furthermore, diversification of water intake sources other than groundwater is needed, especially for agricultural water supply. For water and sewerage facilities, compliance with drinking water quality standards and discharge water quality standards must be achieved through the optimization of operation management. This process requires recruiting professionals, improving existing workers' expertise, and improving facilities.

Preliminary Analysis on Improvement of Water Supply Capacity of Sand Dam (샌드댐 설치에 따른 물공급 개선 효과 예비 분석)

  • Chung, Il-Moon;Lee, Jeongwoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.1
    • /
    • pp.29-37
    • /
    • 2021
  • It is important to introduce a local adaptive water supply system for upper mountainous regions, which provide a margin of water supply. This can be done through the process of securing a water source, planning for optimal use, and combining it with a water source that can be linked. In particular, in a mountainous region located at the uppermost part of the watershed, an approach should be found to utilize the groundwater discharge supplied through valley water and lateral discharge. This study sought to improve the water supply system using sand dams in drought-prone areas in Chuncheon, in Gangwon Province. Our approach involved virtually installing a sand storage tank under the existing water source to perform modeling in consideration of the current water intake and calculating the amount of water that can be taken from the sand dam. When the sand dam was applied at a size four times larger than the existing water source, it was found that the groundwater drainage increased significantly with changes in water surface slope and hydraulic conductivity.

Analysis of the Effects of Drainage Systems in Wetlands Based on Changes in Groundwater Level, Soil Moisture Content, and Water Quality (지하수위, 토양수분함량 및 수질변화를 활용한 습윤화 지역의 배수시설 효과 평가)

  • Kim, Chang-Hoon;Ryu, Jeong-Ah;Kim, Deog-Geun;Kim, Gyoo-Bum
    • The Journal of Engineering Geology
    • /
    • v.26 no.2
    • /
    • pp.251-260
    • /
    • 2016
  • Groundwater flow due to hydraulic gradients across a geologic barrier surrounding a dam reservoir can cause swamps or wetlands to form on the downstream side of the dam, thereby restricting land use. The difference in head between the reservoir level and the downstream groundwater level creates a hydraulic gradient, allowing water to flow through the geologic barrier. We constructed a drainage system at the Daecheong dam to study the effects on groundwater levels and soil moisture contents. The drainage system consisted of a buried screened pipe spanning a depth of 1-1.5 m below a land surface. Groundwater levels were monitored at several monitoring wells before and after the drainage system was installed. Most well sites recorded a decline in groundwater level on the order of 1 m. The high-elevated site (monitoring well W1) close to the reservoir showed a significant decline in groundwater level of more than 2 m, likely due to rapid discharge by the drainage system. Soil moisture contents were also analyzed and found to have decreased after the installation of the drainage system, even considering standard deviations in the soil moisture contents. We conclude that the drainage system effectively lowered groundwater levels on the downstream side of the dam. Furthermore, we emphasize that water seepage analyses are critical to embankment dam design and construction, especially in areas where downstream land use is of interest.

A Study of Optimal Water Supply Planning in Mountainous Area (산지유역에서의 최적용수공급방안에 관한 연구)

  • Kim, Ji-Hak;Park, Ki-Bum
    • Journal of Environmental Science International
    • /
    • v.15 no.10
    • /
    • pp.967-973
    • /
    • 2006
  • In this study used tank model and specific discharge to calculate low-flow of mountain basin and supply data that need in water resources plan. Low-flow is calculated byspecific discharge and area ratio method as resulted that calculate storage of low-flow by tank model was construed that showd all similar aspect. In judged to help in water resources plan establishment calculating low-flow using model to supplement uncertainty of observed data in that calculate of low-flow ungaged mountain area. It shows by economical and realistic plan until 12 years after development that run parallel and use economic performance analysis result valley flow and groundwater. But wide area water services and Chungju dam since 12 years onward was expose that is economic.

Assessment on Stabilization of Open-dumping Landfill Based on Leachate - A Case Study of Salmi Landfill - (침출수 특성 분석을 통한 사용종료 비위생매립지 안정화 평가 - 살미매립지 사례연구 -)

  • Hong, Sang-Pyo;Kim, Kwang-Yul
    • Journal of Environmental Impact Assessment
    • /
    • v.15 no.5
    • /
    • pp.299-308
    • /
    • 2006
  • To utilize a closed municipal solid waste landfill site in environmentally secure conditions, it is necessary to verify the stabilization level of landfill leachate. To assess leachate stabilization of an open-dumping municipal solid waste landfill site (Salmi Landfill) which is located at the vicinity of Chungju Reservoir which flows into Paldang Reservoir utilized as Seoul Metropolitan water supplies, the landfill history and surrounding characteristics of the landfill site were surveyed. In this investigation, waste, leachate, groundwater and surfacewater samples from this landfill were physically and chemically analyzed, and the analysis results were evaluated by 'The Criteria of Landfill Waste Stabilization (CLWS)', 'Discharge Criteria of Landfill Leachate', 'The Criteria of Domestic Use in Groundwater Quality', and 'The Criteria of Domestic Use in Surfacewater Quality' that promulgated by Korean Ministry of Environment. From the analysis results on the Salmi open-dumping landfill, C/N ratio was 18.9 and $BOD/COD_{Cr}$ ratios in leachate were higher than 1/10. Based on the CLWS, this results seemed to imply that the process of leachate stabilization at this landfill was still proceeding.