• Title/Summary/Keyword: groundwater treatment

Search Result 472, Processing Time 0.022 seconds

Treatment of Abandoned Coal Mine Discharged Waters Using Lime Wastes

  • Park Joon-Hong;Kim Hee-Joung;Yang Jae-E.;Ok Yong-Sik;Lee Jai-Young;Jun Sang-Ho
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.10a
    • /
    • pp.59-61
    • /
    • 2005
  • In Korea, hundreds of abandoned and closed coal and metallic mines are present in the steep mountain valleys due to the depression of the mining industry since the late 1980s. From these mines, enormous amounts of coal waste were dumped on the slopes, which causes sedimentation and acid mine drainage (AMD) to be discharged directly into streams causing detrimental effects on soil and water environments. A limestone slurry by-product (lime cake) is produced from the Solvay process in manufacturing soda ash. It has very fine particles, low hydraulic conductivities ($10^{-8}{\sim}10^{-9}cm/sec$), high pH, high EC due to the presence of CaO, MgO and $CaCl_2$ as major components, and traces of heavy metals. Due to these properties, it has potential to be used as a neutralizer for acid-producing materials. A field plot experiment was used to test the application of lime cake for reclaiming coal wastes. Each plot was 20 x 5 m (L x W) in size on a 56% slope. Treatments included a control (waste only), calcite ($CaCO_3$), and lime cake. The lime requirement (LR) for the coal waste to pH 7.0 was determined and treatments consisted of adding 100%, 50%, and 25% of the LR. The lime cake and calcite were also applied in either a layer between the coal waste and topsoil or mixed into the topsoil and coal waste. Each plot was hydroseeded with grasses and planted with trees. In each plot, surface runoff and subsurface water were collected. The lime cake treatments increased the pH of coal waste from 3.5 to 6, and neutralized the pH of the runoff and leachate of the coal waste from 4.3 to 6.7.

  • PDF

A Study on the Liquefaction of Saturated Sand Layer under Oscillating Water Pressure (수압변동에 의한 포화 모래층의 액상화 연구)

  • Howoong Shon;Hyun-Chul Lim;Dae-Geun Lee
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.7 no.2
    • /
    • pp.59-65
    • /
    • 2000
  • The vertical distribution of pore water pressure in the highly saturated sand layer under the oscillating water pressure is studied theoretically and experimentally. By the experiments it is shown that the water pressure acting on the sand surface propagates into the sand layer with the damping in amplitude and the lag in phase, and that the liquefaction, the state that the effective stress becomes zero, occurs under certain conditions. These experimental results are explained fairly well by the same theoretical treatment as for the ground water problems in the elastic aquifer. The main characteristics of liquefaction clarified by the analysis are as follows: 1) The depth of the liquified layer increases with the increase of the amplitude and the frequency of the oscillating water pressure. 2) The increase of the volume of the water and the air in the layer increases the liquified depth. Especially the very small amount of the air affects the liquefaction significantly. 3) The liquified depth decrease rapidly with the increase of the compressibility coefficient of the sand. 4) In the range beyond a certain value of the permeability coefficient the liquified depth decrease with the increase of the coefficient.

  • PDF

Performance of a Hellow Fiber Membrane Diffuser for the Biological Removal of Gaseous BTX (Diffuer 형태의 중공사막 생물반응기를 이용한 기체상 BTX 제거)

  • Son, Young-Gyu;Khim, Jee-Hyeong;Song, Ji-Hyeon
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.4
    • /
    • pp.25-32
    • /
    • 2006
  • In this study, a novel bioreactor system using a diffuser type hollow fiber membranes (hollow fiber membrane diffuser, HFMD) was applied to investigate the feasibility and biodegradation capacity for the treatment of a gaseous mixture consisting of benzene, toluene and p-xylene(BTX). First, A mixed culture pre-acclimated to toluene effectively biodegraded the BTX mixture at an overall removal efficiency of approximately 70% for a 20-day operational period. It was found that the biodegradation of toluene was slightly inhibited because of the presence of benzene and p-xylene. Second, the elimination capacity (EC) of total BTX increased up to 360 $g/m^3/hr$, which was substantially higher than maximum ECs for BTEX reported in the biofiltration literature. Consequently, the hollow fiber membrane diffuser was considered as an alternative method over other conventional VOC-treating technologies such as biofilters.

Removal of PAHs and PCBs in artificially contaminated soils using electron beam irradiation (전자빔 조사에 의한 오염토양중의 PAHs및 PCBs의 분해)

  • 김석구;정장식;김이태;배우근
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.3
    • /
    • pp.61-70
    • /
    • 2002
  • Direct electron beam irradiation experiments on artificially contaminated soil by polynuclear aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) were performed to evaluate applicability of direct electron beam irradiation process for contaminated soil remediation. The removal efficiency of PAHs was about 97 % at 600 kGy and PCBs about 70 % at 800 kGy. PAHs were removed 27 % more, compared to PCBs although the absorbed dose was as low as 200 kGy. The contaminants decomposition was due predominantly to direct interaction of high-energy electrons and the target compounds rather than due to oxidation/reduction reaction by reactive intermediates. Radiolysis of electron beam may be able to decontaminate contaminated soil by toxic and recalcitrant organic compounds like as PAHs and PCBs effectively, but it may be economically uncompetitive. Thus, developments of post-treatment process of conventional site remediation technologies may be more practical and economical than direct radiolysis.

PAHs Degrading Bacterium Separation and Identification for Biological Treatment (PAHs의 생물학적 처리를 위한 분해 미생물 분리 동정)

  • Kim, Man;Choi, Kyoung-Kyoon;Go, Myong-Jin;Park, Jeong-Hun
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.6
    • /
    • pp.70-77
    • /
    • 2007
  • Pseudomonas sp. KM1 was separated from soil contaminated by petroleum and identified. The isolated strain is Gram-positive, rod-shaped and immotile. In batch culture, the optimum cultivation temperature and pH was $35^{\circ}C$ and 7, respectively. Biodegradation of PAHs experiment with soil slurry system was performed using Pseudomonas sp. KM1. Pseudomonas sp. KM1 could degrade 7 PAHs including naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, pyrene, and fluoranthene. These mixed PAHs was easily degraded within one day except fluoranthene, which was degraded much slowly, taking several days by this isolated bacteria. Pseudomonas sp. KM1 is good candidate for bioremediation of PAHs contaminated soils. Biodegradation rates of naphthalene, phenanthrene and pyrene in soils were different at each soil, and the rates were decreased as sorption capacity increased.

Stabilization of Heavy Metal-Contaminated Mine Tailings Using Phosphate Fertilizers and Red Mud (인산염 비료 및 레드머드를 이용한 중금속 오염 광미의 안정화)

  • Kang, Sin-Hyun;Ahn, Jun-Young;Hwang, Kyung-Yup;Seo, Jeong-Yun;Kim, Jae-Gon;Song, Ho-Cheol;Yim, Soo-Bin;Hwang, In-Seong
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.5
    • /
    • pp.31-41
    • /
    • 2011
  • The objectives of this study were to investigate the efficiencies of the stabilizers such as mono-potassium phosphate (MKP), phosphate fertilizer and red mud in treating the mine tailings contaminated with heavy metals and to characterize the changes in fractionations of the heavy metals during the stabilization. The TCLP results showed that the stabilization efficiencies of Cd, Pb and Zn increased with the increase in the stabilizer dosage and the reaction times. MKP showed the highest efficiencies for the heavy metals stabilization among the stabilizers tested. When the mine tailings were amended with MKP, the TCLP concentrations of Cd, Pb and Zn were reduced by 79~97%, 61~84%, and 89~99%, respectively. When the composite stabilizers, MKP/phosphate fertilizer or MKP/red mud, were used, the stabilization efficiencies were lower than when MKP was used as a single stabilizer. The sequential extraction results showed that carbonates fraction of Cd and Zn increased generally. Especially, when red mud was used, carbonates fraction of Cd and Zn increased 5 and 18 times, respectively. In the case of Pb, the treatment with MKP increased residual fraction by 10 times. The results showed that MKP was the most effective in stabilizing the heavy metals (Cd, Pb and Zn) to improve the efficacy of the composite binders.

Improved Germination and Seedling Growth of Echinochloa crus-galli var. frumentacea in Heavy Metal Contaminated Medium by Inoculation of a multiple-Plant Growth Promoting Rhizobacterium (m-PGPR) (중금속 오염배지에서 식물성장증진 근권미생물에 의한 식용 피 발아율과 유식물 성장 증진)

  • Lee, Ah-Reum;Bae, Bum-Han
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.5
    • /
    • pp.9-17
    • /
    • 2011
  • Positive effect of multiple-PGPR (Plan Growth Promoting Rhizobacteria), isolated from heavy metal contaminated soil, on the germination of Barnyard grass (Echinochloa crus-galli var. frumentacea) was quantitatively estimated in 5 heavy metal (Cd, As, Ni, Cu, and Pb) contaminated liquid medium. The $EC_{50}$ value for respective heavy metal was estimated by TSK (Trimmed Speraman-Karber) model based on germination rate. The results showed overall increase in $EC_{50}$ with PGPR inoculation. The $EC_{50}$ value increased 1.4% from 96.0 mg/L (control) to 97.4 mg/L (PGPR-treated) in As contaminated medium. In Ni contaminated medium, the $EC_{50}$ value increased 31.9% from 148.0 mg/L (control) to 195.2 mg/L (PGPR-treated), while the $EC_{50}$ showed 4.8% increase from 63.4 mg/L (control) to 66.5 mg/L (PGPR-treated) in Cu medium. Overall seedling growth was stronger in the PGPR treated seeds than that in the control, but positive effect on seedling growth was not conspicuous. At effective concentration of 100 mg/L, the average seedling length of the PGPR treatment in As, Cd, Cu, and Ni medium, respectively, was 1.13, 0.14, 0.40, and 0.06 cm longer than that in the control. However, the increase of seedling growth was statistically insignificant (p < 0.05). These results suggest that inoculation of the isolated-PGPR exerts positive effects on seed germination by reducing heavy metal toxicity and can be an effective tool for application of phytoremediation on heavy metal contaminated soils.

천안.원주 불량매립지의 침출수 저감연구

  • Lee Jin-Yong;Yun Hui-Seong;Lee Seong-Sun;Cheon Jeong-Yong;Gwon Hyeong-Pyo;Kim Jong-Ho;Kim Chang-Gyun;Park Jeong-Gu
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.398-401
    • /
    • 2006
  • Two landfills of this study containing municipal wastes without any bottom liner and leachate treatment system have different landfill age, waste volume and most importantly different hydrogeologic settings. The one (Cheonan) is situated in an open flat area while the other (Wonju) is located in a valley. In the interior of the landfills, typical anaerobic conditions revealed by low DO and ${NO_3}^-$ concentrations, negative ORP values, high $NH_3$, alkalinity and $Cl^-$ concentrations were observed. Generally higher levels of contaminants were detected in the dry season while those were greatly lowered in the wet season. Significantly large decrease of Cl concentration in the wet season indicates that the dilution or mixing is one of dominant attenuation mechanisms of leachate. But detailed variation behaviors in the two landfills are largely different and they were most dependent on permeability of surface and subsurface layers. The intermediately permeable surface of 1.he landfills receives part of direct rainfall infiltration but most rainwater is lost to fast runoff. The practically impermeable surface of clayey silt (paddy field) at immediately adjacent to the Cheonan landfill boundary prevented direct rainwater infiltration and hence redox condition of the groundwaters were largely affected by that of the upper landfill and the less permeable materials beneath the paddy fields prohibited dispersion of the landfill leachate into downgradient area. In the Wonju landfill, there exist three different permeability divisions, the landfill region, the sandy open field and the paddy field. Roles of the landfill and paddy regions are very similar to those at the Cheonan. The very permeable sandy field receiving a large amount of rainwater infiltration plays a key role in controlling redox condition of the downgradient area and contaminant migration.

  • PDF

Evaluation about Contaminant Migration Near Abandoned Mine in Central Region (중부지역에 위치한 폐광산 주변의 오염물질 이동성 평가)

  • Lee, Jong-Deuk;Kim, Tae-Dong;Jeon, Gee-Seok;Kim, Hee-Joung
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.6
    • /
    • pp.29-36
    • /
    • 2010
  • Several mines including Namil, Solim and Jungbong which are located in the Gyeonggi and Kangwon province have been abandoned and closed since 1980 due to "The promotion policy of mining industry". An enormous amount of mining wastes was disposed without proper treatment, which caused soil pollution in tailing dam and ore-dressing plant areas. However, any quantitative assessment was not performed about soil and water pollution by transporting mining wastes such as acid mine drainage, mine tailing, and rocky waste. In this research, heavy metals in mining wastes were analyzed according to leaching method which used 0.1 N HCl and total solution method which used Aqua-regia to recognize the ecological effect of distance from hot spot. We sampled tailings, rocky wastes and soils around the abandoned mine. Chemical and physical parameters such as pH, electrical conductivity (EC), total organic carbon (TOC), soil texture and heavy metal concentration were analyzed. The range of soil's pH is between 4.3 and 6.4 in the tailing dam and oredressing plant area due to mining activity. Total concentrations of As, Cu, and Pb in soil near ore dressing plant area are 250.9, 249.3 and 117.2 mg/kg respectively, which are higher than any other ones near tailing dam area. Arsenic concentration in tailing dams is 31.0 mg/kg, which is also considered as heavily polluted condition comparing with the remediation required level(RRL) in "Soil environment conservation Act".

Enhancement of Discfilter Removal Efficiency for Small-scale Wastewater Reclamation (소규모 하수 재이용을 위한 디스크필터의 처리 효율 증진에 관한 연구)

  • Choi, Nag-Choul;Kim, Bong-Ju;Park, Seong-Yong;Park, Hyeong-U;Lee, Sung-Jae;Park, Cheon-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.4
    • /
    • pp.66-72
    • /
    • 2015
  • The aim of this study was to enhance of the Discfilter process (maximum treatment capacity - 500 ton/day) removal efficiency for small-scale wastewater reclamation under various influent wastewater conditions (with / without coagulation process, coagulant content and temperature). The result of chemical resistance test for fiber filter in the Discfilter that weight loss was obtained with 0.535% under pH 3, 0.092% under pH 9 and 0.028% under 10% NaClO. The removal efficiency test of Discfilter process on the with / without coagulation process showed that with coagulation process condition was occurred CODMn of 42.26 ± 0.61, BOD5 of 88.72 ± 0.44, T-P of 84.67 ± 0.72 and SS of 90.58 ± 0.61. The removal efficiency of Discfilter process on the coagulant content (4.5, 5.0 and 5.0 mL/min) and temperature (< 10℃, 10℃~ 20℃ and > 20℃) conditions were increased as coagulant content and temperature increased. This study demonstrated the potential application of Discfilter process for small-scale wastewater reclamation.