• 제목/요약/키워드: groundwater quality

검색결과 620건 처리시간 0.028초

Groundwater and Surface Water Hydrology in the Lake Rotorua Catchment, New Zealand, and Community Involvement with Lake Water Quality Restoration

  • White, Paul A.;Hong, Timothy;Zemansky, Gil;McIntosh, John;Gordon, Dougall;Dell, Paul
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2007년도 학술발표회 논문집
    • /
    • pp.8-14
    • /
    • 2007
  • Water quality in Lake Rotorua, New Zealand, deteriorated since the 1960s because of excessive phytoplankton growths due principally to increasing nitrogen and phosphorus in the lake waters. Nutrient concentrations in eight of the nine major streams feeding Lake Rotorua have increased since 1965. The groundwater system has a key role in the hydrology of the Lake Rotorua catchment and the groundwater system is probably the control on the time delay between intensification of agricultural land use and response of surface water quality. All major, and many minor streams, in the catchment are fed by springs. Two lithological units are most important to groundwater flow in the Lake Rotorua catchment: Mamaku Ignimbrite, erupted in about 200,000 years ago and Huka Formation sediments which filled the caldera left by the Mamaku Ignimbrite eruption. Rainfall recharge to groundwater in the groundwater catchment of Lake Rotorua is estimated as approximately 17300 L/s. A calibrated steady-state groundwater flow model estimates that approximately 11100 L/s of this flow discharges into streams and then into the lake and the balance travels directly to Lake Rotorua as groundwater discharge through the lake bed. Land use has impacted on groundwater quality. Median Total Nitrogen (TN) values for shallow groundwater sites are highest for the dairy land use (5.965 mg/L). Median TN values are also relatively high for shallow sites with urban-road and cropping land uses (4.710 and 3.620 mg/L, respectively). Median TN values for all other uses are in the 1.4 to 1.5 mg/L range. Policy development for Lake Rotorua includes defining regional policies on water and land management and setting an action plan for Lake Rotorua restoration. Aims in the action plan include: definition of the current nutrient budget for Lake Rotorua, identification of nutrient reduction targets and identification of actions to achieve targets. Current actions to restore Lake Rotorua water quality include: treatment of Tikitere geothermal nitrogen inputs to Lake Rotorua, upgrade of Rotorua City sewage plant, new sewage reticulation and alum dosing in selected streams to remove phosphorus.

  • PDF

단위유역 단위의 지하수 관리기법 현장적용성 검토 (함평군 중심으로) (Field Applications on Groundwater Management Scheme of Subwatershed Unit in Hampyeong-Gun)

  • 정찬덕;송인성
    • 자원환경지질
    • /
    • 제46권6호
    • /
    • pp.545-559
    • /
    • 2013
  • 지금까지의 지하수 수위분포, 이용현황, 개발가능량, 수질현황 등 지하수조사 성과물은 복잡한 우리나라 지형지세 및 수계형태와 달리 넓은 규모($25{\sim}250km^2$)의 유역(basin) 단위로 작성되어 왔을 뿐만 아니라 수량, 수질관리에 있어서 무엇보다도 중요한 강수량, 지하수위, 이용량, 수질, 오염 등에 대한 명확한 관리기준과 대책을 제시하지 못하고 있다. 따라서 본 연구에서는 GIS를 활용하여 우리나라에 적합한 단위유역(subwatershed) 단위의 강우등급, 수위등급, 이용등급, 오염등급, 수질등급에 대한 분류기준(안)을 제시하고 함평군을 대상으로 시범적으로 적용해봄으로써 그 효율성을 검증하였다.

토지이용이 농업소유역의 수질에 미치는 영향 (Effect of Land Use on the Water Quality of Small Agricultural Watersheds in Kangwon-do)

  • 최중대;이찬만;최예환
    • 한국수자원학회논문집
    • /
    • 제32권4호
    • /
    • pp.501-510
    • /
    • 1999
  • 북한강 수계의 농업소유역에 대하여 하천수(2년)와 지하수(1년) 수질을 모니터링하여 분석하였다. 농업소유역의 주요한 비점원 오염물질인 총질소, 질산성 질소, 총인, BOD, TSS 및 대장균 농도를 주기적으로 측정하였다. 계절에 따른 수질의 변화 및 지하수와 하천수 수질과의 관계 비교를 통하여 토지이용이 수질에 미치는 영향을 분석하였다. 연구유역의 지하수 수위와 총질소, 질산성 질소의 농도의 벼농사와 밀접한 관련이 있었고 지하수와 하천수의 질소농도의 변화도 밀접한 관련이 있음이 나타나 벼농사가 하천의 질소농도에 많은영향을 주는 것으로 나타났다. 그러나 토지이용(벼농사)과 지하수 및 하천수의 총인, BOD, 대장균 농도 사이에는 일정한 관계를 발견할 수 없었다. 본 연구결과는 농업소유역의 수질변화를 이해하고 소하천의 수질관리정책을 개발하는데 유용하게 활용될 수 있을 것이다.

  • PDF

음용 및 비음용 지하수 우선관리대상 항목 선정기법: CROWN (Chemical Ranking of Groundwater PollutaNts) (Chemical Ranking and Scoring Methodology for the Drinking and non-drinking Groundwater pollutants: CROWN (Chemical Ranking of Groundwater PollutaNts))

  • 안윤주;이우미;정승우
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제18권1호
    • /
    • pp.16-25
    • /
    • 2013
  • The Korean groundwater law regulates 20 groundwater contamination parameters, including 14 specific harmful substances. Expanding the number of groundwater quality standards are needed to cope with recent groundwater quality deterioration due to the use of various chemicals. Chemical ranking and scoring system (CRS) is a scientific tool to sort priority chemicals by considering exposure and toxicity potentials. In this study, we developed a CRS for scoring and ranking of possible groundwater pollutants and screened priority substances to be later considered in the Korean standard expansion. Chemical Ranking Of groundWater pollutaNts (CROWN) incorporates important parameters consisting of exposure potential, human and water ecotoxicity, interests, and certainty. Furthermore, CROWN additionally evaluated existence of other media standards to consider impacts by contamination of other media. The 197 substances that were common to 9 countries were selected first. CROWN evaluated and ranked each chemical, and finally suggested priority substances. Suggested priority substances were classified into two groups according to the groundwater use purposes: drinking and non-drinking. The priority substances were further classified into $1^{st}$ and $2^{nd}$ group priorities. The $1^{st}$ group consists of 75 substances, including the all the Korean groundwater standard parameters. CROWN will be used in selecting groundwater pollutants for possible inclusion in the Korean standard expansion.

Groundwater Investigation of the Cheonggyecheon Watershed Area

  • Choi, Doo-Hyung;Yang, Jea-Ha;Jun, Sung-Chun;Lee, Kang-Keun;Kim, Yoon-Young
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 총회 및 춘계학술발표회
    • /
    • pp.323-327
    • /
    • 2004
  • The groundwater system of the Cheonggyecheon watershed is very complicated because it is influenced by many factors such as pumping out, groundwater leakages into subway stations, civil use of groundwater, and leaking water from water supply and sewage lines. So the characterization and evaluation of tile groundwater flow and contaminant transport in the Cheonggyecheon water system is quite a difficult task. The purpose of this study is to analyze of the influence to the 'groundwater' below the Cheonggyecheon watershed by the 'surface water' on the Cheonggyecheon stream after the restoration. We have so far collected groundwater quality data, hydrogeologic aquifer parameters, and tile amount of leakages into subway stations and its influence on the groundwater system of the Cheonggyecheon. Results show that groundwater level was influenced by the direction and depth of a 녀bway station. This study will continue to monitor groundwater quality, a water level fluctuation relation between rainfall and groundwater recharge for further investigation of the groundwater flow system in Cheonggyecheon.

  • PDF

Groundwater system Investigation of the Cheonggyecheon watershed Area

  • Choi, Doo-Hyung;Yang, Jae-Ha;Jun, Seong-Chun;Lee, Kang-Keun;Kim, Yoon-Young
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 임시총회 및 추계학술발표회
    • /
    • pp.326-329
    • /
    • 2004
  • The groundwater system of the Cheonggyecheon watershed is very complicated because it is influenced by many factors such as pumping out, groundwater leakages into subway stations, civil use of groundwater, and leaking water from water supply and sewage lines. So the characterization and evaluation of the groundwater flow and contaminant transport in the Cheonggyecheon water system is quite a difficult task. The purpose of this study is to analyze the influence on the‘groundwater’ below the Cheonggyecheon watershed by the‘maintenance water’on the Cheonggyecheon stream after the restoration. We have so far collected groundwater quality data, hydrogeologic aquifer parameters, and the amount of leakages into subway stations and its influence on the groundwater system. Results show that groundwater level was influenced by the direction and depth of subway tunnel. This study will continue to monitor groundwater quality, a water level fluctuation relation between rainfall and groundwater recharge for further investigation of the groundwater flow system in the Cheonggyecheon watershed.

  • PDF

식품용수 수질자료를 이용한 지하수 오염 예측 모델 개발 및 소규모 유역에서의 검증 (Development of Prediction Model of Groundwater Pollution based on Food Available Water and Validation in Small Watersheds)

  • 남성우;박은규;이명재;전선금;정혜민;김정우
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제26권6호
    • /
    • pp.165-175
    • /
    • 2021
  • Groundwater is used in many areas in food industry such as food manufacturing, food processing, cooking, and liquor industry etc. in Korea. As groundwater occupies a large portion of food industry, it is necessary to predict deterioration of water quality to ensure the safety of food water since using undrinkable groundwater has a ripple effect that can cause great harm or anxiety to food users. In this study, spatiotemporal data aggregation method was used in order to obtain spatially representative data, which enable prediction of groundwater quality change in a small watershed. In addition, a highly reliable predictive model was developed to estimate long-term changes in groundwater quality by applying a non-parametric segmented regression technique. Two pilot watersheds were selected where a large number of companies use groundwater for food water, and the appropriateness of the model was assessed by comparing the model-produced values with those obtained by actual measurements. The result of this study can contribute to establishing a customized food water management system utilizing big data that respond quickly, accurately, and preemptively to changes in groundwater quality and pollution. It is also expected to contribute to the improvement of food safety management.

충청남도 음용지하수 수질의 특성 (The Characteristics of Drinking Groundwater Quality in Chung Cheong Nam Do)

  • 김흥락;한운수;박혜숙
    • 한국환경과학회지
    • /
    • 제11권7호
    • /
    • pp.721-727
    • /
    • 2002
  • The characteristics of drinking groundwater quality at Chung Cheong Nam Do was analyzed by investigating the 3,086 groundwater data which were carried out the water quality inspection from Jan. 1998 to Dec. 1998. It was found that all the mean concentration of items was not over the drinking water quality standard except Zn at Yeongee area. The highest mean concentration of nitrate was $8.2 mg/{\ell}$ at Hongsung area. And the mean concentrations of nitrate and ammonium at Sucheon, Yesan, Yeongee were relatively higher. It was considered that the groundwater of that area was contaminated by breeding livestock as farm pollutants. The mean concentrations of chloride, hardness and evaporation residual at coastal regions were higher than inland regions. Especially the mean concentration of chloride was 2.5 times higher. It was considered that the groundwater at coastal regions was affected by seawater. It was found that the correlation between Fe and Mn was relatively high(r=0.776) and the correlation between hardness and evaporation residual was very high(r=0.983). The rainfall series and detection rate of E-coli had the hydrologic persistence. The correlation between the detection rate and rainfall series over 150 mm was very high (r=0.9146). Therefore it is surely required to control the groundwater sanitation in the rainy season.

Analysis of correlation between groundwater level decline and wetland area decrease

  • Amos Agossou;Jae-Boem Lee;Bo-Gwon Jung;Jeong-Seok Yang
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.374-374
    • /
    • 2023
  • Groundwater is the main source of water on which relies many countries in case of emergency, this is the case of Japan in 2011 after the great Sendai Earthquake. This important resource is found to be heavily influenced by human induced factors such as wetland area reduction. For groundwater sustainable management in perfect cohesion with wetland it is important to understand the relationship between both resources. Wetlands have a strong interaction with both groundwater and surface water, influencing catchment hydrology and water quality. Quantifying groundwater-wetland interactions can help better identify locations for wetlands restoration and/or protection. This study uses observation data from piezometers and wetland to study the qualitative and quantitative aspects of the correlation. Groundwater level, wetland area, chemical, organic and inorganic contaminants are the important parameters used. the results proved that few contaminants in the wetland are found in groundwater and in general the wetland quality does not affect that much groundwater quality. The strong linear relationship found between wetland water level and nearest groundwater level proved that, in term of quantity, groundwater and wetland are strongly correlated. While wetland becoming dry, groundwater level has dropped in the region about 0.52m. The area of wetland was found to be lightly correlated with groundwater level, proving that wetlands dry has contributed to groundwater level declining. This study has showed that whilst rainfall variability contributed to the decline and loss of wetlands, the impacts from landuse changes and groundwater extraction were likely to be significant contributors to the observed losses.

  • PDF