• Title/Summary/Keyword: groundwater pathway

Search Result 74, Processing Time 0.032 seconds

Effect of Minerals surface characteristics On Reduction Dehalogenation of chlorination solvents in water-FeS/FeS$_2$ system

  • 김성국;허재은;박세환;장현숙;박상원;홍대일
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.05a
    • /
    • pp.108-111
    • /
    • 2000
  • FeS/FeS$_2$ minerals have been known to be potentially useful reductant to the removal of common organic contaminants in groundwater and soil. This research is aimed at improving our understanding of factors affecting the pathways and rates of reductive transformation of Hexachloroethane by catalytical iron minerals in natural system. Hexachloroethane is reduced by FeS/FeS$_2$ minerals under anaerobic condition to tetrachloroethylene and trichloroethylene with pentachloroethyl radical as the intermediate products. The kinetics of reductive transformations of the Hexachloroethane have been investigated in aqueous solution containing FeS, FeS$_2$. The proposed reduction mechanism for the adsorbed nitrobenzene involves the electron donor-acceptor complex as a precursor to electron transfer. The adsorbed Hexachloroethane undergo a series of electron transfer, proton transfer and dehydration to achieve complete reduction. It can be concluded that the reductive transformation reaction takes place at surface of iron-bearing minerals and is dependent on surface area and pH. Nitrobenzene reduction kinetics is affected by reductant type, surface area, pH, the surface site density, and the surface charge. FeS/FeS$_2$-mediated reductive dechlorination may be an important transformation pathway in natural systems.

  • PDF

Numerical Study of Contaminant Pathway for Risk Assessment in Subsurface of Contaminated Sites (오염부지 위해성평가 시 오염물질 노출이동경로 평가를 위한 수치모델 적용에 관한 연구)

  • Chang, Sun Woo;Moon, Hee Sun;Lee, Eunhee;Joo, Jin Chul;Nam, Kyoungphile
    • Journal of Soil and Groundwater Environment
    • /
    • v.24 no.3
    • /
    • pp.13-23
    • /
    • 2019
  • The purpose of this study is to suggest conceptual models based on finite numerical method that can be used to assess contaminant transport through subsurface and estimate exposed concentration at contaminated site. This study tested various assumptions of the numerical models for contaminant transport in unsaturated and saturated zones to simulate the pathways to the human exposal point. For this purpose, models for seven possible scenarios of contaminant transport were simulated using the numerical code MODFLOW and MT3D. The simulation results that showed different peak concentrations and travel times were compared. In conclusion, the potential utility of the numerical models in the site specific risk analysis suggested as well as future research ramifications.

Evaluation of Natural Attenuation by Addition of Fumarate as Carbon Source and Gene Analysis in Groundwater Sample (지하수 중 탄소원으로 fumarate 주입과 유전자분석을 통한 질산성질소 자연저감도 평가)

  • Park, Sunhwa;Kim, Hyun-Gu;Kim, Sohyun;Lee, Min-Kyeong;Lee, Gyeong-Mi;Kim, Young;Kim, Moon-Su;Kim, Taeseung
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.4
    • /
    • pp.62-69
    • /
    • 2014
  • In the results of monitoring nitrate concentration in more than 8,000 groundwater wells around agro-livestock, the average and maximum nitrate concentration was 9.4 mg/L and 101.2 mg/L, respectively. Since about 31% of the monitoring wells was exceed the quality standard for drinking water, nitrate control such as remediation or source regulation is required to conserve safe-groundwater in South Korea. Typical nitrate-treatment technologies include ion exchange, reverse osmosis, and biological denitrification. Among the treatment methods, biological denitrification by indigenous microorganism has environmental and economic advantages for the complete elimination of nitrate because of lower operating costs compared to other methods. Major mechanism of the process is microbial reduction of nitrate to nitrite and nitrogen gas. Three functional genes (nosZ, nirK, nirS) that encode for the enzyme involved in the pathway. In this work, we tried to develop simple process to determine possibility of natural denitrification reaction by monitoring the functional gene. For the work, the functional genes in nitrate-contaminated groundwater were monitored by using PCR with specific target primers. In the result, functional genes (nosZ and nirK) encoding denitrification enzymes were detected in the groundwater samples. This method can help to determine the possibility of natural-nitrate degradation in target groundwater wells without multiplex experimental process. In addition, for field-remediation application we selected nitrate-contaminated site where 200~600 mg/L of nitrate is continuously detected. To determine the possibility of nitrate-degradation by stimulated-natural attenuation, groundwater was sampled in two different wells of the site and nitrate concentration of the samples was 300 mg/L and 616 mg/L, respectively. Fumarate for different C/N ratio was added into microcosm bottles containing the groundwater to examine denitrification rate depending on carbon concentration. In the result, once 1.5 times more than amount of fumarate stoichiometry required was added, the 616 mg/L of nitrate and 300 mg/L of nitrate were completely degraded in 8 days and 30 days. The nitrite, byproduct of denitrification process, was also completely degraded during the experimental period.

Numerical Simulation of Groundwater Flow in Feterogenetic Rockmass of Unsaturated Condition (암반의 불균질성을 고려한 불포화대 지하수 유동 평가)

  • Ha, Jaechul;Lee, Jeong Hwan;Cheong, Jae-yeol;Jung, Haeryong
    • The Journal of Engineering Geology
    • /
    • v.26 no.1
    • /
    • pp.87-99
    • /
    • 2016
  • We present the results of two-dimensional numerical simulations predicting the flow of groundwater in a fractured unsaturated zone. We applied the k-field distribution of permeability derived from discrete fracture network (DFN) modeling as the hydraulic properties of a model domain. To model an unsaturated zone, we set the depth from the ground surface to the underground aquifer. The rate of water infiltration into the unsaturated zone was divided into two parts, an artificial structure surface and unsaturated soil zone. The movement of groundwater through the unsaturated zone was simulated with particular emphasis on contaminant transport. It was clearly observed that the contaminants dissolved in groundwater transported vertically from the ground surface to the saturated zone.

Application of TREECS Program to Predict the Fate of TNT and RDX from Firing Range (TREECS 프로그램을 이용한 화약류 오염 군 사격장 토양의 TNT와 RDX 유출 특성 연구)

  • Yu, Gihyeon;Jung, Jae-Woong;Nam, Kyoungphile
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.6
    • /
    • pp.133-139
    • /
    • 2015
  • Attention to munitions constituents such as 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in the firing ranges is increasing due to their toxicity and high mobility to the environment. It is helpful to use a systemic model to predict the amount of contaminants for the establishment of environmental management of firing ranges. This study employed Training Range Environmental Evaluation and Characterization System (TREECS) program to estimate the mobility characteristics of TNT and RDX via groundwater leaching, soil erosion and surface water runoff. The prediction results of the TNT and RDX migration with TREECS showed that 68% of initial TNT and 21% of initial RDX were discharged through the soil erosion and the 20% of initial TNT and 54% of initial RDX ran out the firing range via the groundwater leaching. The rest of the initial TNT and RDX moved to adjacent surface water via surface runoff. The data suggest that soil erosion and surface runoff occupying 80% of TNT to the total amount are important migration pathways. On the other hand, groundwater leachning occupying 54% to the total amount was also important pathway for RDX.

Groundwater Use and Its Perspective in Haean Basin, Yanggu County of Gangwon Province (강원도 양구군 해안분지의 지하수 사용과 전망)

  • Lee, Jin-Yong;Han, Jiwon
    • Journal of Wetlands Research
    • /
    • v.15 no.2
    • /
    • pp.179-189
    • /
    • 2013
  • The Haean basin is a unique geographical feature formed by differential erosion and it borders the military demarcation line. Recently the basin has become an interest of civilians due to security tour, highland vegetables and wetland. After the civil war, the population decreased but it has increased since 2007. The annual mean air temperature in the basin has increased with a rate of $+0.016^{\circ}C/yr$ and the annual precipitation also has increased with a rate of +10.41 mm/yr. The precipitation occurring in June~August (wet season) occupied most of the total precipitation increase. In addition, recently the number of groundwater wells and its use have gradually increased and most of them are for agriculture including cultivation of rice and highland vegetables. If the air temperature further increases in the future according to the climate change scenarios, the highland vegetables cultivation will be difficult. Furthermore, if the rainstorm in the summer will be enforced, the groundwater recharge and water management will be aggravated. Therefore, an evaluation for sustainable groundwater development in the basin and a reform of the current agriculture (change of cultivating crops) depending on much water are essentially required.

Construction of a Preliminary Conceptual Site Model Based on a Site Investigation Report for Area of Concerns about Groundwater Contamination (지하수 오염우려지역 실태조사 보고서 기반의 사전 부지개념모델 구축)

  • Kim, Juhee;Bae, Min Seo;Kwon, Man Jae;Jo, Ho Young;Lee, Soonjae
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.spc
    • /
    • pp.64-74
    • /
    • 2022
  • The conceptual site model (CSM) is used as a key tool to support decision making in risk based management of contaminated sites. In this work, CSM was applied in Jeonju Industrial Complex where site investigation for groundwater contamination was conducted. Site background information including facility types, physical conditions, contaminants spill history, receptor exposure, and ecological information were collected and cross-checked with tabulated checklist necessary for CSM application. The CSM for contaminants migration utilized DNAPL transport model and narrative CSMs were constructed for source to receptor pathway, ecological exposure route, and contaminants fate and transport in the form of a diagram or flowchart. The component and uncertainty of preliminary CSM were reviewed using the data gap analysis while taking into account the purpose of the survey and the site management stage at the time of the survey. Through this approach, the potential utility of CSM was demonstrated in the site management process, such as assessing site conditions and planning follow-up survey work.

Understanding and Their Application of GoldSim Transport Pathways to Mass Trasport Simulation (질량 이동 모사 프로그램 개발을 위한 골드심 이동 패쓰웨이의 이해와 활용)

  • Lee, Youn-Myoung;Jeong, Jongtae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.2
    • /
    • pp.135-151
    • /
    • 2014
  • It is very important to properly understand such "Transport Pathways" elements as "Pipe" and "Cell" pathways in commercial GoldSim Transport Module (GTM) for developing higer quality models and programs for performance assessment of complex radioactive waste repositories. With an illustrative case under an earthquake scenario, by which an increasement in the groundwater flow rate occurs though the geological medium, ways of avoiding possible modeling errors in the nuclide transport modeling in the radioactive waste repository system for its safety assessment by utilizing such pathways are discussed and a proper usage of the pathways is proposed.

Characterization of Fracture System for Comprehensive Safety Evaluation of Radioactive Waste Disposal Site in Subsurface Rockmass (방사성 폐기물 처분부지의 안정성 평가검증을 위한 균열암반 특성화 연구)

  • 이영훈;신현준;김기인;심택모
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.6 no.3
    • /
    • pp.111-119
    • /
    • 1999
  • The purpose of this study is the simulation of discontinuous rockmass and identification of characteristics of discontinuity network as a branch of the study on characteristics of groundwater system in discontinuous rockmass for evaluation of safety on disposal site of radioactive waste. In this study the site for LPG underground storage was selected for the similarities of the conditions which were required for disposal site of radioactive waste. Through the identification of hydraulic properties. characteristics of discontinuities and selection of discontinuity model around LPG underground storage facility. the applications of discrete fracture network model were evaluated for the analysis of pathway. The orientation and spatial density of discontinuities are primarily important elements for the simulation of groundwater and solute transportation in discrete fracture network model. In this study three fracture sets identified and the spatial intensity (P$_{32}$) of discontinuities is revealed as 0.85 $m^2$/㎥. The conductive fracture intensity (P$_{32c}$) estimated for the simulation area around propane cavern (200${\times}$200${\times}$200) is 0.536 $m^2$/㎥. Truncated conductive fracture intensity (T-P$_{32c}$) is calculated as 0.26 $m^2$/㎥ by eliminating the fracture with the iowest transmissivity and based on this value the pathway from the water curtain to PC 2. PC 3 analyzed.

  • PDF

Three-Dimensional Numerical Simulation of Impacts of Fault Existence on Groundwater Flow and Salt Transport in a Coastal Aquifer, Buan, Korea (한국 부안 지역 해안 대수층 내의 지하수 유동 및 염분 이동에 대한 단층 존재의 영향 삼차원 수치 모의)

  • Park, Ju-Hyun;Kihm, Jung-Hwi;Kim, Han-Tae;Kim, Jun-Mo
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.5
    • /
    • pp.33-46
    • /
    • 2008
  • A series of three-dimensional numerical simulations using a generalized multidimensional hydrodynamic dispersion numerical model is performed to simulate effectively and to evaluate quantitatively impacts of fault existence on densitydependent groundwater flow and salt transport in coastal aquifer systems. A series of steady-state numerical simulations with calibration is performed first for an actual coastal aquifer system which contains a major fault. A series of steadystate numerical simulations is then performed for a corresponding coastal aquifer system which does not have such a major fault. Finally, the results of both numerical simulations are compared with each other and analyzed. The results of the numerical simulations show that the major fault produces hydrogeologically significant heterogeneity and true anisotropy in the actual coastal aquifer system, and density-dependent groundwater flow, salt transport, and seawater intrusion patterns in the coastal aquifer systems are intensively and extensively dependent upon the existence or absence of such a major fault. Especially, the major fault may act as a pathway for groundwater flow and salt transport along the direction parallel to its plane, while it may also behave as a barrier against groundwater flow and salt transport along the direction perpendicular to its plane.