• Title/Summary/Keyword: groundwater industry

Search Result 96, Processing Time 0.028 seconds

Current States of the Global Water Market and Considerations for the Groundwater Industry in South Korea (물 시장의 현주소와 지하수 산업에 대한 고찰)

  • Kim, Byung-Woo;Koh, Yong-Kwon;Choi, Doo-Houng;Kim, Deog-Geun;Kim, Gyoo-Bum
    • The Journal of Engineering Geology
    • /
    • v.24 no.3
    • /
    • pp.431-440
    • /
    • 2014
  • Since the establishment of the Groundwater Act in Korea in 1993, the national policy on groundwater has focused on the preservation and management of groundwater, which should be used only as a subsidiary water resource. However, population growth, increased water demand, climate change, and the need for uniform water distribution have brought changes to groundwater policy, and have led to the prioritization of development projects such as groundwater dams and river bank filtration. Population growth, changes to the water environment, and increased water risks have all played a role in triggering rapid growth within the water industry; the size of the investment in water resources will also continue to increase worldwide. Until now, private wells and bottled mineral water have led the groundwater industry in South Korea. However, a new area of the groundwater industry, which includes the health and medical sciences, employs groundwater properties derived from regional geology, and is growing. This requires the advancement of groundwater research and technical development connected with ICT (Information and Communication Technology) and medical science, and that the public development of groundwater and its various applications is expanded through locating groundwater in the core of the water industry cluster.

Development of Prediction Model of Groundwater Pollution based on Food Available Water and Validation in Small Watersheds (식품용수 수질자료를 이용한 지하수 오염 예측 모델 개발 및 소규모 유역에서의 검증)

  • Nam, Sungwoo;Park, Eungyu;Yi, Myeong-jae;Jeon, Seonkeum;Jung, Hyemin;Kim, Jeongwoo
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.6
    • /
    • pp.165-175
    • /
    • 2021
  • Groundwater is used in many areas in food industry such as food manufacturing, food processing, cooking, and liquor industry etc. in Korea. As groundwater occupies a large portion of food industry, it is necessary to predict deterioration of water quality to ensure the safety of food water since using undrinkable groundwater has a ripple effect that can cause great harm or anxiety to food users. In this study, spatiotemporal data aggregation method was used in order to obtain spatially representative data, which enable prediction of groundwater quality change in a small watershed. In addition, a highly reliable predictive model was developed to estimate long-term changes in groundwater quality by applying a non-parametric segmented regression technique. Two pilot watersheds were selected where a large number of companies use groundwater for food water, and the appropriateness of the model was assessed by comparing the model-produced values with those obtained by actual measurements. The result of this study can contribute to establishing a customized food water management system utilizing big data that respond quickly, accurately, and preemptively to changes in groundwater quality and pollution. It is also expected to contribute to the improvement of food safety management.

Remediation Groundwater contaminated with Nitrate and Phosphate using Micellar-enhanced ultrafiltration

  • 백기태;양지원
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.334-337
    • /
    • 2002
  • The drinking water industry faces a growing number of difficultiesin the treatment of groundwater for drinking water production. Groundwater sources are frequently contaminated with nitrates and phosphates due to usage of chemical fertilizer In this study, feasibility of micellar enhanced ultrafiltation (MEUF) was investigated to remediate groundwater contaminated with nitrate and phosphate. Ultrafiltration membrane was cellulose acetate with molecular weight cut off (MWCO) 10,000 and celtyl pyridinium chloride (CPC) was used to form pollutant-micelle complex with nitrate and phosphate. The results show that nitrate and phosphate rejections are satisfactory. The removal efficiency of nitrate and phosphate show 80% and 84% in single pollutant system, respectively with 3 molar ratio of CPC to pollutants. In the multi-pollutant systems, the removalefficiency increased to 90 % and 89 % for nitrate and phosphate, respectively, The presence of nitrate in the solutions did not affect the removal of phosphate and that of phosphate did not affect the removal of nitrate. The concentration of CPC in the permeate and removal efficiency of CPC was a function of the concentration of CPC in the feed solutions.

  • PDF

Evaluation of Groundwater Contamination Potential of Pesticides Using Groundwater Ubiquity Score in Jeju Island Soils (Groundwater Ubiquity Score를 이용한 제주도 토양 특성별 농약의 지하수 오염가능성 평가)

  • Hyun, Hae-Nam;Jang, Gong-Man;Oh, Sang-Sil;Chung, Jong-Bae
    • The Korean Journal of Pesticide Science
    • /
    • v.11 no.3
    • /
    • pp.144-153
    • /
    • 2007
  • One of the most recent issues facing the pesticides regulatory process is the assessment of the potential for pesticides to leach through soil and appear in groundwater. Since Jeju island depends on a hydrogeologically vulnerable aquifer system as its principle source of drinking water, it is important to identify which pesticides are the most likely to result in groundwater contamination. The objective of this study was to assess groundwater contamination risk of 21 pesticides (12 insecticides, 6 herbicides and 3 fungicides) in Jeju soils using groundwater ubiquity score (GUS). Considering GUS estimated in 21 representative series of Jeju soils, generally herbicides showed relatively higher leaching potentials and insecticides showed lower leaching potentials. Groundwater contamination risk was higher in the order of bromacil > metolachlor > alachlor > linuron pretilachlor > butachlor for herbicides, carbofuran > ethoprophos > diazinone > dimethoate > penthoate > mecarbam > methidathion > endosulfan > fenitrothion > parathion > chlorpyrifos > terbufos for insecticides, and metalaxyl > chlorothalonil > triadimefon for fungicides. Among the tested pesticides alachlor, metolachlor, bromacil, ethoprophos and carbofuran were classified as the pesticides of very high or high groundwater contamination potential. Although the ranking of the leaching potential was essentially determined on the base of the intrinsic properties of the chemicals and environmental properties, variation of the relative groundwater contamination potentials of each pesticides in different soils were not significant. Therefore, the above ranking of groundwater contamination risk would be applied in most of Jeju soils. To lower the possibility of pesticide contamination of groundwater, the use of those pesticides classified as high or very high leaching potential should be strictly regulated in Jeju Island.

Characteristics of Groundwater and Soil Contamination in Hallim Area of Jeju Island (제주도 한림지역의 지하수와 토양의 오염특성)

  • Hyun, Geun-Tag;Song, Sang-Tak;Joa, Dal-Hee;Ko, Yong-Hwan
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.3
    • /
    • pp.44-51
    • /
    • 2010
  • Contamination of groundwater from point and non-point sources is one of major problems of water resource manangement in Jeju island. This study characterized groundwater and soil contamination in Hallim area which is one of the areas of significantly contaminated soil and groundwater in Jeju Island. The amount of loaded contaminant (ALC) of Jeju area was estimated as 13,212 ton N/yr and 3,210 ton P/yr, The ALC of Hallim area was amounted to 2,895 ton N/yr and 1,102 ton P/yr, which accounted for 21.9% and 34.3% of the Jeju's ALC, respectively. The soil pH values (5.6-5.9) were not much different in land use areas. By contrat, average cation exchange capacity (CEC) of 14.1 $cmol^+/kg$ was high comparing to the nationwide range of 7.7-10.9 $cmol^+/kg$. Further, Sodium adsorption ratios (SARs) of horse ranch, pasture, and cultivating land for livestock were as high as 0.19, 0.17, and 0.16 respectively, comparing to the other landuse areas. Nitrate nitrogen at 22.2% of total groundwater wells exceeded 10 mg/L (the criteria of nitrate nitrogen for drinking water), averaginged 6.62 mg/L with maximum 28.95 mg/L. Groundwater types belonged to Mg-$HCO_3$, Na-$HCO_3$, Ca-$HCO_3$, and Na-Cl, among which Mg-$HCO_3$ type occupied more than 70% of the total samples, indicating the presence of anthropogenic sources. The concentration of nitrate nitrogen was negatively related to altitude and well depth, and positively related to the concentration of Ca, Mg, and $SO_4$ which might originate from chemical fertilizer. The ratio of nitrogen isotopes was estimated as an average of 8.10$^{\circ}/_{\circ\circ}$, and the maximum value of 17.9$^{\circ}/_{\circ\circ}$. According to the nitrogen isotope ratio, the most important nitrogen source was assessed as chemical fertilizer (52.6%) followed by sewage (26.3%) and livestock manures (21.1%).

Assessment of Groundwater Quality for Irrigation and Agro-based Industrial Usage in Selected Aquifers of Bangladesh

  • Rahman, Md. Mokhlesur;Hoque, Syed Munerul;Jesmin, Sabina;Rahman, Md. Siddiqur;Kim, Jang-Eok
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.2
    • /
    • pp.98-105
    • /
    • 2005
  • Groundwater sampled from 24 tube wells of three districts namely Sherpur, Gaibandha and Naogaon in Bangladesh was appraised for their water quality for irrigation and agro-based industrial usage. All waters under test were slightly alkaline to alkaline (pH = 7.2 to 8.4) in nature and were not problematic for crop production. As total dissolved solid (TDS), all groundwater samples were classified as fresh water (TDS<1,000 mg/L) in quality. Electrical conductivity (EC) and sodium adsorption ratio (SAR) values reflected that waters under test were under medium salinity (C2), high salinity (C3) and also low alkalinity (S1) hazard classes expressed as C2S1 and C3S1. As regards to EC and soluble sodium percentage (SSP), groundwater samples were graded as good and permissible in category based on soil properties and crop growth. All water samples were free from residual sodium carbonate (RSC) and belonged to suitable in category. Water samples were under soft moderately hard, hard and very hard classes. Manganese, bicarbonate and nitrate ions were considered as major pollutants in some water samples and might pose threat in soil ecosystem for long-term irrigation. For most of the agro-based industrial usage, Fe and Cl were considered as troublesome ions. On the basis of TDS and hardness, groundwater samples were not suitable for specific industry. Some water samples were found suitable for specific industry but none of these waters were suitable for all industries. The relationship between water quality parameters and major ions was established. The correlation between major ionic constituents like Ca, Mg, K, Na, $HCO_3$ and Cl differed significantly. Dominant synergistic relationships were observed between EC-TDS, SAR-SSP, EC-Hardness, TDS-Hardness and RSC-Hardness.

Review of Contamination and Monitoring of On-site Groundwater at Foreign Nuclear Power Plants due to Unplanned Release (비계획적 방출에 의한 해외 원전 부지 지하수 오염 및 감시 기술현황 분석)

  • Sohn, Wook;Lee, Gab-Bok;Yang, Yang-Hee
    • Journal of Radiation Protection and Research
    • /
    • v.38 no.2
    • /
    • pp.124-131
    • /
    • 2013
  • Utilities have tried to ensure that radiological hazards to the environment and residents are kept as low as reasonably achievable by monitoring and controlling planned releases. However, since groundwater contamination was reported to occur due to unplanned releases mostly in the United States nuclear power plants, the interest of the stakeholders has increased to a point where it is now one of the most important issues in the United States nuclear power industry. This paper aims to help to implement an effective on-site groundwater monitoring program at domestic nuclear power plants by briefing the experiences of the United States nuclear power plants on groundwater contaminations and groundwater monitoring, and responses of the United States nuclear industry and regulator body for them.

A Pilot Study for Remediation of Groundwater by Surfactant -Enhanced Soil Flushing

  • Park, Jong Oh;Lee, Dal-Heui
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.5
    • /
    • pp.1-7
    • /
    • 2016
  • The removal of non-aqueous phase liquids (NAPLs) from groundwater using pure water, via pump and treat, is quite ineffective due to their low solubility and hydrophobicity. Therefore, the objectives of pilot tests were to select potentially suitable surfactants that solubilize tetrachloroethylene (PCE) and trichloroethylene (TCE) present as contaminants and to evaluate the optimal range of process parameters that can increase the removal efficiency in surfactant-enhanced soil flushing (SESF). Used experimental method for surfactant selection was batch experiments. The surfactant solution parameters for SESF pilot tests were surfactant solution concentration, surfactant solution pH, and the flow rate of surfactant solution in the SESF pilot system. Based on the batch experiments for surfactant selection, DOSL (an anionic surfactant) was selected as a suitable surfactant that solubilizes PCE and TCE present as contaminants. The highest recovery (95%) of the contaminants was obtained using a DOSL surfactant in the batch experiments. The pilot test results revealed that the optimum conditions were achieved with a surfactant solution concentration of 4% (v/v), a surfactant solution pH of 7.5, and a flow rate of 30 L/min of surfactant solution (Lee and Woo, 2015). The maximum removal of contaminants (89%) was obtained when optimum conditions were simultaneously met in pilot-scale SESF operations. These results confirm the viability of SESF for treating PCE and TCE-contaminated groundwater.

GROUNDWATER RECHARGE ESTIMATION USING ARCGIS-CHLORIDE MASS BALANCE APPROACH

  • Lee Ju Young;Krishinamurshy Ganeshi
    • Water Engineering Research
    • /
    • v.6 no.1
    • /
    • pp.31-38
    • /
    • 2005
  • Groundwater recharge is defined in an addition of water to groundwater reservoir. Recently, many people have been moving to the Edwards aquifer and urban and agricultural industry have been expending. Hydrologists and water planning managers concern about insufficient groundwater amounts and irrigation water price variability. In this paper, I focus on estimates of local recharge volumes and quantify preferential flow through GIS technique. Chloride Mass Balance (CMB) and hydrochemical components have been widely applied to recharge rate and evaluate flow paths. The CMB method is based on relationship between wet-dry chloride deposition data and Rainfall data. These data are manipulated using ArcGIS. Especially, hydrochemical concentration distribution is good index for groundwater residence times or flow paths such as $[Mg^{2+}]/[Ca^{2+}],[Cl]$ and log$([Ca^{2+}]+[Mg^{2+}])/[Na^+]$. Well information such as hydrological-hydrochemical data are imported into ArcGIS and manipulated by interpolation techniques. For each potentiometric surface and water quality, point data are converted to spatial data through each Kriging and Inverse Distance Weighted (IDW) techniques.

  • PDF

Groundwater Pollution Analysis Using Patent Map (특허맵을 이용한 지하수 오염현황 분석 연구)

  • Im, Eun Jung;Kim, Sung Hyun;Hyeon, Dong Hun
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.4
    • /
    • pp.601-607
    • /
    • 2012
  • Advance countries are trying hard to acquire intellectual properties on the technologies for prior occupation in the future industry. Patent contains meaningful technical achievement. Patent map is required to propose the strategies for efficient development and use of these technologies. In this paper, analysis of foreign and domestic patents for groundwater pollution technologies analysis. It was analyzed by utilizing two processes of patent map and paper analysis. The patents in Korea, USA, Japan, China, and Europe were searched. It was found that the number of patent for groundwater pollution was USA patent 44.3%, Japan patent 17.1%, China 13.3%, EU 1.9% and Korea patent 23.3%, respectively.