• Title/Summary/Keyword: groundwater change

Search Result 550, Processing Time 0.032 seconds

Assessment of Future Climate Change Impact on Groundwater recharge, Baseflow and Sediment in Steep Sloping Watershed (미래 기후변화에 따른 급경사지 유역에서의 지하수 함양, 기저유출 및 토양유실 평가)

  • Lee, Ji Min;Jung, Younghun;Park, Younshik;Kang, Hyunwoo;Lim, Kyoung Jae;Kim, Hungsoo
    • Journal of Wetlands Research
    • /
    • v.16 no.2
    • /
    • pp.173-185
    • /
    • 2014
  • Climate change has caused detrimental phenomena such as heavy rainfall which could aggravate soil erosion. Accordingly, it is needed to evaluate the groundwater recharge, baseflow, and soil erosion for the efficient management of water resources and quality. In this study, future climate change scenarios were applied to the H aean-myeon watershed which is a steep sloping watershed in South Korea to analyze groundwater recharge, baseflow, sediment. Also, the variation of groundwater recharge, baseflow, sediment was analyzed according to the change of slope (5 %). Simulated periods were divided into three terms (2013 ~ 2040 years, 2041 ~ 2070 years, 2071 ~ 2100 years). As a result of this study, average groundwater recharge and baseflow increased by 50 %, 42 %, and sediment decreased by 72 %, respectively. In these regards, the suggested method will positively contribute to hydro-ecosystem and reduction of muddy water at a steep sloping watershed.

Evaluation of Drought Effect on Groundwater System using Groundwater Level Data in Jeju Island (지하수위 자료를 이용한 제주도 지하수계의 가뭄 영향 평가)

  • Song, Sung-Ho;Lee, Byung-Sun;Choi, Kwang-Jun;Kim, Jin-Sung;Kim, Gi-Pyo
    • Journal of Environmental Science International
    • /
    • v.23 no.4
    • /
    • pp.637-647
    • /
    • 2014
  • Quantitative assessment of groundwater level change under extreme event is important since groundwater system is directly affected by drought. Substantially, groundwater level fluctuation reveals to be delayed from several hours to few months after raining according to the aquifer characteristics. Groundwater system in Jeju Island would be also affected by drought and almost all regions were suffered from a severe drought during summer season (July to September) in 2013. To estimate the effect of precipitation to groundwater system, monthly mean groundwater levels in 2013 compared to those in the past from 48 monitoring wells belong to be largely affected by rainfall(Dr) over Jeju Island were analyzed. Mean groundwater levels during summer season recorded 100 mm lowered of precipitation compared to the past 30 years became decreased to range from 2.63 m to 5.42 m in southern region compared to the past and continued to December. These decreasing trends are also found in western(from -1.21 m to -4.06 m), eastern(-0.91 m to -3.24 m), and northern region(from 0.58 m to -4.02 m), respectively. Moreover, the response of groundwater level from drought turned out to be -3.80 m in August after delaying about one month. Therefore, severe drought in 2013 played an important role on groundwater system in Jeju Island and the effect of drought for groundwater level fluctuation was higher in southern region than other ones according to the regional difference of precipitation decrease.

Seasonal Variation of Hydraulic Gradient according to Rainfall in Unconfined Aquifer : Hyogyo-ri (자유면 대수층에서 강우량에 따른 수리경사 계절 변동 분석 : 효교리)

  • Kyoung-deok Park;Dong-hwan Kang;Won Gi Jo;In-Kyu Shin;Yun-Yeong Oh;MoonSu Kim;Hyun-Koo Kim
    • Journal of Environmental Science International
    • /
    • v.32 no.5
    • /
    • pp.303-313
    • /
    • 2023
  • In this study, the hydraulic gradient was calculated using the groundwater level and rainfall observed in the Hyogyo-ri area for a year, and the change in the hydraulic gradient according to the rainfall was analyzed. It was found that the groundwater level increased as the rainfall increased in all groundwater wells in the research site, and the groundwater level rise decreased as the altitude of the groundwater well increased. The hydraulic gradient in the research site ranged from 0.016 to 0.048, decreasing during rainfall and increasing after the end of the rainfall. As the rainfall increased, the groundwater level rise in the low-altitude area was more than the high-altitude area, and the hydraulic gradient decreased due to the difference in groundwater level rise according to the altitude. Through this study, it was found that the influence of rainfall is dominant for the fluctuation of the hydraulic gradient in the unconfined aquifer.

통계분석을 이용한 지하수위 변동 특성 분류

  • 문상기;우남칠
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.09a
    • /
    • pp.155-159
    • /
    • 2001
  • A study on multivariate statistical classification of ground water hydrographs was conducted. The vast data of national ground water monitoring network (78 sites of alluvium) were used. 6 factors were selected to classify the ground water level change. Factor analysis was proved to be useful tool for classifying vast hydrogeological data.

  • PDF

Calculation of Ground Water Recharge Ratio Using Cumulative Precipitation and Water-level Change (누적 강수량과 지하수위 곡선을 이용한 지하수 함양률 산정 기법)

  • 문상기;우남칠
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.23-30
    • /
    • 2000
  • A calculation technique which estimates natural recharge was proposed and prepared with the existing techniques. And the necessity to obtain representative averages of 'specific yield' was discussed.

  • PDF

Performance Comparison of LSTM-Based Groundwater Level Prediction Model Using Savitzky-Golay Filter and Differential Method (Savitzky-Golay 필터와 미분을 활용한 LSTM 기반 지하수 수위 예측 모델의 성능 비교)

  • Keun-San Song;Young-Jin Song
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.3
    • /
    • pp.84-89
    • /
    • 2023
  • In water resource management, data prediction is performed using artificial intelligence, and companies, governments, and institutions continue to attempt to efficiently manage resources through this. LSTM is a model specialized for processing time series data, which can identify data patterns that change over time and has been attempted to predict groundwater level data. However, groundwater level data can cause sen-sor errors, missing values, or outliers, and these problems can degrade the performance of the LSTM model, and there is a need to improve data quality by processing them in the pretreatment stage. Therefore, in pre-dicting groundwater data, we will compare the LSTM model with the MSE and the model after normaliza-tion through distribution, and discuss the important process of analysis and data preprocessing according to the comparison results and changes in the results.

  • PDF

Vulnerability assessment of upland public groundwater wells against climate change

  • Shin, Hyung Jin;Lee, Jae Young;Jo, Sung Mun;Cha, Sang Sun;Park, Chan Gi
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.3
    • /
    • pp.577-596
    • /
    • 2020
  • Drought is a natural disaster that directly affects agriculture, which has a great impact on the global agricultural production system and yield. The lack of water storage in most parts of the country due to the lack of precipitation has caused a great increase in social interest in drought due to the dryness of rice fields and crops. As the drought period increases and the drought intensity becomes stronger, it is believed that drought damage to crops will continue; thus, it is necessary to understand the vulnerability to irrigation performance and the ability of irrigation facilities. Therefore, this study conducted a vulnerability assessment of irrigation facilities (public Groundwater well) in cities across the country. The survey was conducted using statistical data from 2007 to 2016, and the vulnerability score was calculated according to the vulnerability evaluation procedure for drought in the irrigation facilities (public groundwater wells). Among 157 regions, 136 areas were very vulnerable; 14 areas were vulnerable; 3 areas were normal; 4 areas were good, and 0 areas were excellent. The vulnerability assessment can be used as basic data for the development or maintenance of field irrigation facilities in the future by understanding the vulnerability of irrigation facilities.

Comparison of Time Series of Alluvial Groundwater Levels before and after Barrage Construction on the Lower Nakdong River (낙동강 하류 하천구조물 건설 전후의 충적층 지하수위 시계열 특성 비교)

  • Kim, Gyoo-Bum;Cha, Eun-Jee;Jeong, Hae-Geun;Shin, Kyung-Hee
    • The Journal of Engineering Geology
    • /
    • v.23 no.2
    • /
    • pp.105-115
    • /
    • 2013
  • Increasing the river cross-section by barrage construction causes rises in the average river water levels and discharge rates in the rainy season. The time series patterns for groundwater levels measured at 23 riverside monitoring wells along the lower Nakdong River are compared for two cases: before and after water-filling at the Changnyeong-Haman Barrage. Monthly average groundwater levels indicate a distinct increase in groundwater levels in the upstream riverside close to the barrage. River-water level management by barrage gate control in August, during the rainy season, resulted in a 0.1 m decrease in groundwater levels, while water-filling at the barrage in December caused a 1.3 m increase in groundwater levels. The results of hierarchical cluster analysis indicate that seven groundwater monitoring wells and river water levels were in the same group before barrage construction, but that this number increased to 14 after barrage construction. Principal component analysis revealed that the explanation power of two principal components corresponding to river fluctuation, PC1 and PC2, was approximately 82% before barrage construction but decreased to 45% after construction. This finding indicates that the effect of the river level component that contributes to change in groundwater level, decreases after barrage construction; consequently, other factors, including groundwater pumping, become more important. Continuous surveying and monitoring is essential for understanding change in the hydrological environment. Water policy that takes groundwater-surface water interaction into consideration should be established for riverside areas.

The Estimation of Soil Loss in the Buffer Zone of Guem River using a Simulation of Future Climate Change (미래기후변화를 반영한 금강 수변 구역에서의 표토 유실량 예측)

  • Lee, Dal-Heui;Chung, Sung-Lae
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.6
    • /
    • pp.30-36
    • /
    • 2014
  • The objective of this study is to estimate soil loss in the buffer zone of Guem river with future climate change simulation. Revised Universal Soil Loss Equation (RUSLE) model was used for the estimation of soil loss at the buffer zone of Guem river. As results of simulations, the area of the maximum soil loss potential was estimated as the Cheongsung-myeon Okchun-gun Chungcheongbuk-do. The soil losses were estimated to be 106.67 and 103.00 ton/ha/yr for the 2020 segi (2015-2025) and 2040 segi (2035-2045) in the Cheongsung-myeon area, respectively. Also, the estimated average values of soil losses in the Cheongsung-myeon with future climate change was 110.78 ton/ha/yr.