• 제목/요약/키워드: groundwater arsenic

검색결과 186건 처리시간 0.027초

울산지역 지하수중 비소의 산출 및 존재형태 (Occurrence and Species of Arsenic in the Groundwater of Ulsan Area)

  • 윤욱;조병욱;성규열
    • 자원환경지질
    • /
    • 제37권6호
    • /
    • pp.657-667
    • /
    • 2004
  • 울산광역시 46개 지하수 시료 중 29개 시료에서 비소가 검출되었고, 그 농도는 $<0.1-7.2{\mu}g/L$의 범위를 나타낸다. 그 중 3개의 지하수에서 국내음용수 기준치$(50{\mu}g/L)$를 초과하였고, 10째 시료에서는 세계보건기구 기준치인 $(10{\mu}g/L)$를 초과하고 있음이 이번 연구에서 밝혀졌다. 비소의 농도가 높은 곳은 지질구조선 부근 특히 과거 울산철광 부근인 달천리 일대와 정자역암이 분포하는 효문동 일대이다. 울산철광 부근은 주로 황철석이 산화된 형태로 산화환경을 보이나, 효문동 일대는 환원상태의 FeOOH의 산화에서 야기되는 것으로 해석된다. pH-Eh 도표에 따른 연구지역 지하수중 비소의 존재형태는 달천리 일대에서는 As(V)로 $H_2AsO_4^-,\;HAsO4_^{-2}$로 존재한다. 효문리등 구조선일대는 As(III)로 $H_3AsO_3$ 형태로 존재한다.

나노 크기 적철석 입자 피복 모래를 이용한 지하수내 비소 3가와 5가의 제거 기술 개발

  • 고일원;이철효;이상우;김주용;김경웅
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 추계학술발표회
    • /
    • pp.78-82
    • /
    • 2003
  • Development of hematite-coated sand was evaluated for the application of the PRB (permeable reactive barrier) in the arsenic-contaminated subsurface of the metal mining areas. The removal efficiency of As(III) and As(V), the effect of anion competition and the capability of arsenic removal in the flow system were investigated through the experiments of adsorption isotherm, arsenic removal kinetics against anion competition and column removal. Hematite-coated sand followed a linear adsorption isotherm with high adsorption capacity at low level concentrations of arsenic (< 1.0 mg/l). When As(III) and As(V) underwent adsorption reactions in the presence of anions (sulfate, nitrate and bicarbonate), sulfate caused strong inhibition of arsenic removal, and bicarbonate and nitrate caused weak inhibition due to specific and nonspecific adsorption onto hematite, respectively. In the column experiments, high content of hematite-coated sand enhance the arsenic removal, but the amount of the arsenic removal decreased due to the higher affinity of As(V) than As(III) and reduced adsorption kinetics in the flow system, Therefore, the amount of hematite-coated sand, the adsorption affinity of arsenic species and removal kinetics determined the removal efficiency of arsenic in the flow system. arsenic, hematite-coated sand, permeable reactive barrier, anion competition, adsorption.

  • PDF

필터시스템을 이용한 비소처리흡착제의 성능비교분석

  • 방선택;김주용;김경웅
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2005년도 총회 및 춘계학술발표회
    • /
    • pp.13-16
    • /
    • 2005
  • Laboratory and field experiments were conducted to study the effectiveness of five adsorbents for the removal of arsenic. The adsorbents included activated alumina (AA), iron coated AA (ICAA), and granular ferric hydroxide (GFH), granular ferric oxide (GFO), and granular titanium dioxide (GTD). Laboratory experiments were conducted to investigate arsenic removal using challenge water prepared in accordance with NSF International Standards 53 (ANSl/NSF 53-2001). Field experiments were conducted using arsenic-contaminated groundwater In laboratory experiment, the treatment capacity decreased in the following order GTD > GFO > GFH. In contrast, the treatment capacity decreased in the following order GFO > GTD > GFH > ICAA > Ah in field experiments.

  • PDF

A Mathematical Model Development for Microbial Arsenic Transformation and Transport

  • Lim, Mi-Sun;Yeo, In-Wook;Lee, Kang-Kun
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 총회 및 춘계학술발표회
    • /
    • pp.318-322
    • /
    • 2004
  • Arsenic is a toxic and carcinogenic metalloid, whose sources in nature include mineral dissolution and volcanic eruption. Abandoned mines and hazardous waste disposal sites are another major source of arsenic contamination of soil and aquatic systems. To predict concentrations of the toxic inorganic arsenic in aqueous phase. the biogeochemical redox processes and transport behavior need to be studied together and be coupled in a reactive transport model. A new reaction module describing the fate and transport of inorganic arsenic species (As(II)), dissolved oxygen, nitrate, ferrous iron, sulfate, and dissolved organic carbon are developed and incorporated into the RT3D code.

  • PDF

ICS(Iron oxide Coated Sand)를 이용한 비소 제거

  • 최형진;장윤영;양재규
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 총회 및 춘계학술발표회
    • /
    • pp.314-317
    • /
    • 2003
  • The overall objective of the adsorption study of arsenic was to elucidate the ability of iron coated sand(ICS), synthesized in the laboratory, to remove arsenic from polluted waters. Batch tests were conducted to provide a relation between arsenic removal and iron content of ICSs. The ICS, developed in the laboratory by coating iron onto the surface of ordinary sand by a simple and easy process has proved as an effective medium for use in removal of arsenic from waters over a wide range of particle sizes of ICS. The composite media is inexpensive to prepare and could serve as the basis of a useful arsenic removal process in variety settings.

  • PDF

Efficient Removal of Arsenic Using Magnetic Multi-Granule Nanoclusters

  • Lee, Seung-Ho;Cha, Jinmyung;Sim, Kyunjong;Lee, Jin-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권2호
    • /
    • pp.605-609
    • /
    • 2014
  • Magnetic multi-granule nanoclusters (MGNCs) were investigated as an inexpensive means to effectively remove arsenic from aqueous environment, particularly groundwater sources consumed by humans. Various size MGNCs were examined to determine both their capacity and efficiency for arsenic adsorption for different initial arsenic concentrations. The MGNCs showed highly efficient arsenic adsorption characteristics, thereby meeting the allowable safety limit of $10{\mu}g/L$ (ppb), prescribed by the World Health Organization (WHO), and confirming that 0.4 g and 0.6 g of MGNCs were sufficient to remove 0.5 mg/L and 1.0 mg/L of arsenate ($AsO_4{^{3-}}$) from water, respectively. Adsorption isotherm models for the MGNCs were used to estimate the adsorption parameters. They showed similar parameters for both the Langmuir and Sips models, confirming that the adsorption process in this work was active at a region of low arsenic concentration. The actual efficiency of arsenate removal was then tested against 1 L of artificial arsenic-contaminated groundwater with an arsenic concentration of 0.6 mg/L in the presence of competing ions. In this case, only 1.0 g of 100 nm MGNCs was sufficient to reduce the arsenic concentrations to below the WHO permissible safety limit for drinking water, without adjusting the pH or temperature, which is highly advantageous for practical field applications.