• Title/Summary/Keyword: ground-state analogues

Search Result 3, Processing Time 0.019 seconds

A prognosis discovering lethal-related genes in plants for target identification and inhibitor design (식물 치사관련 유전자를 이용하는 신규 제초제 작용점 탐색 및 조절물질 개발동향)

  • Hwang, I.T.;Lee, D.H.;Choi, J.S.;Kim, T.J.;Kim, B.T.;Park, Y.S.;Cho, K.Y.
    • The Korean Journal of Pesticide Science
    • /
    • v.5 no.3
    • /
    • pp.1-11
    • /
    • 2001
  • New technologies will have a large impact on the discovery of new herbicide site of action. Genomics, combinatorial chemistry, and bioinformatics help take advantage of serendipity through tile sequencing of huge numbers of genes or the synthesis of large numbers of chemical compounds. There are approximately $10^{30}\;to\;10^{50}$ possible molecules in molecular space of which only a fraction have been synthesized. Combining this potential with having access to 50,000 plant genes in the future elevates tile probability of discovering flew herbicidal site of actions. If 0.1, 1.0 or 10% of total genes in a typical plant are valid for herbicide target, a plant with 50,000 genes would provide about 50, 500, and 5,000 targets, respectively. However, only 11 herbicide targets have been identified and commercialized. The successful design of novel herbicides depends on careful consideration of a number of factors including target enzyme selections and validations, inhibitor designs, and the metabolic fates. Biochemical information can be used to identify enzymes which produce lethal phenotypes. The identification of a lethal target site is an important step to this approach. An examination of the characteristics of known targets provides of crucial insight as to the definition of a lethal target. Recently, antisense RNA suppression of an enzyme translation has been used to determine the genes required for toxicity and offers a strategy for identifying lethal target sites. After the identification of a lethal target, detailed knowledge such as the enzyme kinetics and the protein structure may be used to design potent inhibitors. Various types of inhibitors may be designed for a given enzyme. Strategies for the selection of new enzyme targets giving the desired physiological response upon partial inhibition include identification of chemical leads, lethal mutants and the use of antisense technology. Enzyme inhibitors having agrochemical utility can be categorized into six major groups: ground-state analogues, group specific reagents, affinity labels, suicide substrates, reaction intermediate analogues, and extraneous site inhibitors. In this review, examples of each category, and their advantages and disadvantages, will be discussed. The target identification and construction of a potent inhibitor, in itself, may not lead to develop an effective herbicide. The desired in vivo activity, uptake and translocation, and metabolism of the inhibitor should be studied in detail to assess the full potential of the target. Strategies for delivery of the compound to the target enzyme and avoidance of premature detoxification may include a proherbicidal approach, especially when inhibitors are highly charged or when selective detoxification or activation can be exploited. Utilization of differences in detoxification or activation between weeds and crops may lead to enhance selectivity. Without a full appreciation of each of these facets of herbicide design, the chances for success with the target or enzyme-driven approach are reduced.

  • PDF

Competitive Photochlorination Reactions of Silane, di-Chloro and tri-Chlorosilanes at 337.1 nm

  • Jung, Kyung-Hoon;Jung, Kwang-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.4
    • /
    • pp.242-246
    • /
    • 1987
  • The hydrogen abstraction reactions of $SiH_4, SiH_2Cl_2 \;and\; SiHCl_3$ by ground state chlorine atoms generated photochemically from chlorine molecules have been studied at temperatures between 15 and $100^{\circ}C.$ The absolute rates for the reactions have been obtained by a competition technique using ethane as a competitor. The rate expressions ($in cm^3/mol/s$) are found to conform to an Arrhenius rate law: $k_{SiH_4} = (7.98 {\pm} 0.42) {\times} 10^{13}$ exp $[-(1250 {\pm}20)/T].$ $k_{SiH_2Cl_2} = (2.25 {\pm} 0.12) {\times} 10^{15}$ exp[-(1010 ${\pm}$ 10)/T]. $k_{SiHCl_3} = (9.04 {\pm} 0.28) {\times} 10^{14}\; exp[-(1200 {\pm} 10)/T].$ The activation energies obtained from this study represent the same trend as with the carbon analogues, while this trend was not found with respect to the bond dissociation energies among silicon compound homologues. These anomalous behaviors were interpreted in terms of electronic effects and of the structural differences between these compounds.

Semiempirical Calculations of Hyperpolarizabilities for Quinoline Derivatives (Quinoline계 분자의 초분극률에 관한 반경험적 계산)

  • Ryu Ungsik;Choi Donghoon;Kim Nakjoong;Lee Yoon Sup
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.1
    • /
    • pp.62-67
    • /
    • 1993
  • The microscopic origin of nonlinear optical properties of quinoline derivatives have been investigated theoretically using MOPAC-AM1 method. In order to prepare promising nonlinear optical active polymers of polyquinoline derivatives, the optimized positions of strong electron donor and electron acceptor are determined in the heterocyclic ring for the energetically favorable structures. For each compound, the effect of the substituted positions on the microscopic nonlinear coefficients were investigated. Polyquinoline was already evaluated to have outstanding physical and mechanical properties so that its monomeric analogues were designed and synthesized for developing new second and third order nonlinear optical main chain polymers. Using the MOPAC-AM1 method, properties calculated include the intrinsic ground-state dipole moments, the polarizabilities, first and second hyperpolarizabilities under the condition of finite-field $(\omega$ = 0).

  • PDF