• Title/Summary/Keyword: ground-space laser

Search Result 28, Processing Time 0.024 seconds

Mission-Oriented Conceptional Design of the Cube Satellite CNU Laser Unity Bus (CLUB) for Ground-Space Laser Research (지상-우주 레이저 연구를 위한 큐브위성 CLUB(CNU Laser Unity Bus)의 임무 중심 개념설계)

  • Seok-Min Song;Ho Sub Song;Chae-Ryeong Kim;Young-In Kang;Yang-Ha Ju;Mansoo Choi;Hyung-Chul Lim;Yu Yi
    • Journal of Space Technology and Applications
    • /
    • v.4 no.1
    • /
    • pp.48-61
    • /
    • 2024
  • In this paper, we introduce the concept of the cube satellite Chungnam National University Laser Unity Bus (CLUB), which can provide an integrated infrastructure for various ground-space laser applications. With the advent of the new space era, the rapid expansion of space utilization has begun to reveal the limitations of conventional radio frequencies. As space missions diversify, lasers are garnering attention as a viable alternative. Between ground and space, lasers are applied in various fields including satellite laser ranging (SLR), laser weapons, and laser communication. However, laser used between the ground and space are significantly influenced by the Earth's atmosphere. Consequently, understanding the atmospheric effects on laser propagation is crucial. In particular, atmospheric turbulence, which refracts and distorts laser beams, intensifies closer to the Earth's surface, exerting a greater impact on the uplink than on the downlink. While downlink verification is facilitated by ground detection, verifying the uplink poses challenges due to the necessity of space-based detection. In response to these challenges, we propose the idea of cube satellite as a means to enhance understanding and verification of laser propagation in the uplink. Additionally, we present the results of conceptual design by analyzing requirements, focusing on mission design of the CLUB cube satellite, following the stages of systems engineering for systematic cube satellite development.

Analysis of Tip/Tilt Compensation of Beam Wandering for Space Laser Communication

  • Seok-Min Song;Hyung-Chul Lim;Mansoo Choi;Yu Yi
    • Journal of Astronomy and Space Sciences
    • /
    • v.40 no.4
    • /
    • pp.237-245
    • /
    • 2023
  • Laser communication has been considered as a novel method for earth observation satellites with generation of high data volume. It offers faster data transmission speeds compared to conventional radio frequency (RF) communication due to the short wavelength and narrow beam divergence. However, laser beams are refracted due to atmospheric turbulence between the ground and the satellite. Refracted laser beams, upon reaching the receiver, result in angle-of-arrival (AoA) fluctuation, inducing image dancing and wavefront distortion. These phenomena hinder signal acquisition and lead to signal loss in the course of laser communication. So, precise alignment between the transmitter and receiver is essential to guarantee effective and reliable laser communication, which is achieved by pointing, acquisition, and tracking (PAT) system. In this study, we simulate the effectiveness of tip/tilt compensation for more efficient laser communication in the satellite-ground downlink. By compensating for low-order terms using tip/tilt mirror, we verify the alleviation of AoA fluctuations under both weak and strong atmospheric turbulence conditions. And the performance of tip/tilt correction is analyzed in terms of the AoA fluctuation and collected power on the detector.

Evaluating Laser Beam Parameters for Ground-to-space Propagation through Atmospheric Turbulence at the Geochang SLR Observatory

  • Ji Hyun Pak;Ji Yong Joo;Jun Ho Lee;Ji In Kim;Soo Hyung Cho;Ki Soo Park;Eui Seung Son
    • Current Optics and Photonics
    • /
    • v.8 no.4
    • /
    • pp.382-390
    • /
    • 2024
  • Laser propagation through atmospheric disturbances is vital for applications such as laser optical communication, satellite laser ranging (SLR), laser guide stars (LGS) for adaptive optics (AO), and laser energy transmission systems. Beam degradation, including energy loss and pointing errors caused by atmospheric turbulence, requires thorough numerical analysis. This paper investigates the impact of laser beam parameters on ground-to-space laser propagation up to an altitude of 100 km using vertical atmospheric disturbance profiles from the Geochang SLR Observatory in South Korea. The analysis is confined to 100 km since sodium LGS forms at this altitude, and beyond this point, beam propagation can be considered free space due to the absence of optical disturbances. Focusing on a 100-watt class laser, this study examines parameters such as laser wavelengths, beam size (diameter), beam jitter, and beam quality (M2). Findings reveal that jitter, with an influence exceeding 70%, is the most critical parameter for long-exposure radius and pointing error. Conversely, M2, with an influence over 45%, is most significant for short-exposure radius and scintillation.

Ground Base Laser Torque Applied on LEO Satellites of Various Geometries

  • Khalifa, N.S.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.4
    • /
    • pp.484-490
    • /
    • 2012
  • This paper is devoted to investigate the feasibility of using a medium power ground-based laser to produce a torque on LEO satellites of various shapes. The laser intensity delivered to a satellite is calculated using a simple model of laser propagation in which a standard atmospheric condition and linear atmospheric interaction mechanism is assumed. The laser force is formulated using a geocentric equatorial system in which the Earth is an oblate spheroid. The torque is formulated for a cylindrical satellite, spherical satellites and for satellites of complex shape. The torque algorithm is implemented for some sun synchronous low Earth orbit cubesats. Based on satellites perigee height, the results demonstrate that laser torque affecting on a cubesat has a maximum value in the order of $10^{-9}$ which is comparable with that of solar radiation. However, it has a minimum value in the order of $10^{-10}$ which is comparable with that of gravity gradient. Moreover, the results clarify the dependency of the laser torque on the orbital eccentricity. As the orbit becomes more circular it will experience less torque. So, we can conclude that the ground based laser torque has a significant contribution on the low Earth orbit cubesats. It can be adjusted to obtain the required control torque and it can be used as an active attitude control system for cubesats.

Experiments of Free-Space Optical Communication for Optical Ground Station (광통신 지상국 구축을 위한 자유공간 광통신 실험)

  • Taewoo Kim;Wonseok Kang;Sang Hoon Oh;Yong-sun Park;Jung-Hoon Kim
    • Journal of Space Technology and Applications
    • /
    • v.4 no.1
    • /
    • pp.74-85
    • /
    • 2024
  • As the limitations of conventional radio communications between satellites and the ground become apparent, various experiments are being conducted around the world to overcome them with space laser communication. In this study, we address the development of our own optical communications terminal (OCT) and optical ground station (OGS) and the experiments of free-space optical communication (FSOC) using them. Using a 30 mm-diameter OCT and a 250 mm-diameter portable OGS telescope, as well as commercial 10 Gbps SFP+ modules and media converters, we successfully transmitted and received 4K high-definition multimedia interface (HDMI) signals through 1,550 nm optical laser beam. The transmission and reception distances of the experiment were 3, 9, and 20 km, respectively, and the received signal strength at each distance was +6.1, -2.8, and -10.9 dBm, respectively. It was demonstrated that the 4K HDMI video lasted for over 10 minutes.

Laser Ranging for Lunnar Reconnaissance Orbiter using NGSLR (NGSLR 시스템을 이용한 LRO 달 탐사선의 레이저 거리측정)

  • Lim, Hyung-Chul;McGarry, Jan;Park, Jong-Uk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.11
    • /
    • pp.1136-1143
    • /
    • 2010
  • One-way laser ranging technology is applied for the precise orbit determination of LRO, which is the first trial for supporting the missions of lunar or planetary spacecraft. In this paper, LRO payload and ground system are discussed for LRO laser ranging, and some errors effecting on time of flight and tracking mount accuracy are analyzed. Additionally several technologies are also analyzed to make laser pulses shot from ground stations to arrive in the LRO earth window. Measurement data of LRO laser ranging verified that these technologies could be implemented for one-way laser ranging of lunar spacecraft.

Ground Altitude Computation Algorithm using Laser Altimeter and GPS for UAV Automatic Take-off and Landing (레이저 고도계 및 GPS를 이용한 무인기의 자동이착륙용 지면고도계산 알고리듬 설계)

  • Cho, Sangook;Choi, Keeyoung;Kim, Sung-Su
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.1
    • /
    • pp.54-60
    • /
    • 2013
  • This paper presents a ground altitude determination algorithm using a laser altimeter and GPS for automatic take-off and landing of UAV. The characteristics of the laser altimeter was analyzed in ground tests and a low-pass filter was designed to reduce the effect of signal interruption due to reflectivity problem. The paper shows that a single sensor cannot measure ground altitude appropriately in terms of reliability and accuracy. To complement shortcomings of the laser altimeter, the linear Kalman filter was designed using DGPS vertical speed. Designed filter was validated and tuned through the steps of simulation, ground test and flight test. It was confirmed that the accuracy for automatic landing is achievable.

Development of Operation System for Satellite Laser Ranging on Geochang Station (거창 인공위성 레이저 추적을 위한 운영 시스템 개발)

  • Ki-Pyoung Sung;Hyung-Chul Lim;Man-Soo Choi;Sung-Yeol Yu
    • Journal of Space Technology and Applications
    • /
    • v.4 no.2
    • /
    • pp.169-183
    • /
    • 2024
  • Korea Astronomy and Space Science Institute (KASI) developed the Geochang satellite laser ranging (SLR) system for the scientific research on the space geodesy as well as for the national space missions including precise orbit determination and space surveillance. The operation system was developed based on the server-client communication structure, which controls the SLR subsystems, provides manual and automatic observation modes based on the observation algorithm, generates the range data between satellites and SLR stations, and carry out the post-processing to remove noises. In this study, we analyzed the requirements of operation system, and presented the development environments, the software structure and the observation algorithm, for the server-client communications. We also obtained laser ranging data for the ground target and the space geodetic satellite, and then analyzed the ranging precision between the Geochang SLR station and the International Laser Ranging Service (ILRS) network stations, in order to verify the operation system.

Link Budget Analysis of Laser Retroreflector Array for KOMPSAT-5 (다목적실용위성5호 레이저반사경의 Link Budget 분석)

  • Lee, Sang-Hyun;Kim, Kyung-Hee;Lee, Jun-Ho;Jin, Jong-Han;Lim, Hyung-Chul;Park, Jong-Uk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.1
    • /
    • pp.92-99
    • /
    • 2008
  • KOMSAT-5 will attach an laser retroreflector array for precise orbit determination. Laser retroreflector array was developed by DFZ in Germany and have pyramid type composed of four corner cube prisms. In this paper, the performance analyses as effective area of retroreflector and photons measured by link budget and position of ground station were performed.

LAGEOS 11 위성의 LASER 관측자료를 이용한 정밀 거리 결정

  • ;He Miaofu;Tan Detong;Cui Douxing
    • Bulletin of the Korean Space Science Society
    • /
    • 1993.04a
    • /
    • pp.7.1-7
    • /
    • 1993
  • 위성의 정밀 거리 결정을 위해 1993년 9월 5일부터 IS일간 중국의 상해 천문대 Sheshan관측소와 장춘 인공위성 관측소에서 LAGEOS 11 (Laser Geodynamics Satellite II)에 대한 SLR (Satellite Laser Ranging) 관측을 수행하였다. SLR 관측에서는 지상의 관측소에서 발사한 LASER 펄스 (pulse)가 반사경들(retroflectors)로 둘러싸인 인공위성에 반사되어 돌아오는 RTT (Round Trip Time)를 측정하여 위성까지의 거리를 결정하는데, 관측된 시간과 거리 자료는 많은 잡음(noise)를 포함하고 있기 때문에 정확한 자료를 얻기 위해서는 많은 보정이 필요하다. 관측된 시간, 거리 자료를 지상 목표물 조준(ground target ranging )에 의한 system보정, 원자시계와 GPS에서 수신된 시간과의 시간 비교, 측정된 온도, 기압, 상대 습도에 따른 대기 영향의 보정 등을 통해 오차를 줄이고 다시 LASERF beam의 대기 굴절에 따른 거리 변화 보정, 위성의 질량 중심 거리(offset) 보정, 조석력에 의한 변화값 보정, 전자기적 지연(electromagnetic delay)에 의한 상대론적 보정등을 통해서 정밀한 거리 자료를 얻었다.

  • PDF