• Title/Summary/Keyword: ground track

Search Result 350, Processing Time 0.021 seconds

A Study on Prediction of Rolling Noise for Railway;- Calculation of Ground Effect and Noise Radiated by Sleeper- (철도차량의 전동음 예측에 관한 연구;- 지표면 효과 및 침목에서 방사되는 소음 계산 -)

  • 김재철;정현범;이재응
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.1
    • /
    • pp.56-62
    • /
    • 2003
  • The major noise source for the conventional train is the rolling noise caused by the interaction of the wheels and rails during the train passage on the tangent track. In order to control the rolling noise, the noise radiated from wheels, rails and sleepers should be analyzed and predicted. In this paper, a prediction method of wheel/rail rolling noise generated by the roughness of the wheel/rail surface is described, where the method is considering the effect of noise radiated by sleepers and the effect of ground. The method is applied to the Korean railway system, and the sound pressure level (SPL) predicted by the proposed method is compared with the measured SPL. Overall. the result shows good agreement between the predicted and measured values.

Evaluation on Effectiveness of Rail Grinding by Prediction of Rail Fatigue Life (레일 피로수명 예측에 따른 레일 연마의 효용성 평가)

  • Kim, Man-Cheol
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.255-261
    • /
    • 2008
  • The importance of maintenance of rail surface defects is increasing according to the KTX operation. That is because during high speed operation of rolling stocks, rail surface defects shorten fatigue life of rail, accelerate track degradation and deteriorate ride comfort. Rail grinding has been applied for effective rail maintenance in Kyeong-Bu HS line. This paper evaluates the effectiveness of rail grinding in term of rail fatigue life. To this end, the stresses of the ground rail are measured under KTX running and the equivalent stress range is calculated by RMC after the frequency analysis done with Rainflow counting method. Also, Pamglen-Miner rule is applied to predict the fatigue life of ground rail. The result of the analysis shows that the fatigue life of ground rail is increased by 15%.

  • PDF

Orbit Determination of LEO Satellite using Ground Tracking Data (지상국 추적 데이터를 이용한 저궤도 위성의 궤도결정 특성 분석)

  • Jung, Ok-Chul;Choi, Su-Jin;Chung, Dae-Won;Kim, Eun-Kyou;Kim, Hak-Jung
    • Aerospace Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.170-176
    • /
    • 2011
  • This paper analyzes the orbit determination results using azimuth and elevation angle from ground tracking data, which has the standard data interface format, GEOS-C. The ground tracking data is very useful for initial orbit determination after a satellite launch. In this paper, the quality of the measurement data has been investigated using a variety of real tracking passes, compared with the high precision orbit data of KOMPSAT-2. The accumulated tracking data from consecutive satellite-ground passes is processed for orbit determination using least square method. The accuracy of orbit determination result is also presented.

Development of a Nondestructive Seismic Technique for Flexural Rigidity of Concrete Track as Slab Displacement Index (콘크리트 슬래브궤도의 휨강성 평가를 위한 비파괴 탄성파 기법의 개발)

  • Cho, Mi-Ra;Joh, Sung-Ho;Lee, Il-Wha
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6D
    • /
    • pp.905-913
    • /
    • 2008
  • Recently, concrete tracks are introduced into high-speed railroads as an alternative to ballast tracks. Concrete tracks are superior to ballast tracks in the aspect of durability, maintenance and safety. However, deteriorated stiffness of railroad bed and settlement of soft ground induced by trapped or seepage water lead to problems in safety of train operation. In this research, flexural rigidity of concrete tracks was employed as an index of track displacement and a new seismic technique called FRACTAL (Flexural-Rigidity Assessment of Concrete Tracks by Antisymmetric Lamb Waves) method was proposed to delineate flexural rigidity of concrete tracks in a 2-D image. In this paper, to establish theoretical background, parametric research was performed using numerical simulations of stress-wave tests at concrete tracks. Feasibility of the FRACTAL technique was proved at a real concrete track for Korean high-speed trains. Validity of the FRACTAL technique was also verified by comparing the results of impulse-response tests performed at the same measurement array and the results of DC resistivity survey performed at a shoulder nearby the track.

Modeling of Train Radio Propagation Affected by Ground Reflected Wave in High-speed Railway (고속철도 지면반사파를 고려한 열차무선 전파모델)

  • Bae, Sung-Ho;Song, Ki-Hong;Choi, Kyu-Hyoung
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.6
    • /
    • pp.460-465
    • /
    • 2013
  • Radio propagation in a high-speed railway is affected by ground reflective waves that are due to irregular reflection by the railway track, which consists of rails, sleepers, and gravel. This paper provides a train radio propagation model that simulates an irregular track reflective wave as a random variable. A simulation study using the train radio propagation model shows that the path loss exponent is around 3.0, indicating a reduced path loss compared to the value of 4.0 in the general mobile radio environment. Regressive analysis of the received signal strength indicators measured in the Gyeongbu high-speed railway showed the results identical to those of the simulation. These results confirm the train radio propagation model and can be applied to the coverage estimation and the design of a train radio network.

A Comparative of Ground Stress with Difference of the Fixed Point Loading and Moving Wheel Loading (모형실험을 통한 고정 및 이동하중 재하 방법에 따른 노반 변형거동 비교)

  • Choi, Chan-Yong;Shin, Eun-Chul;Eum, Ki-Young;Shin, Min-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.1
    • /
    • pp.49-56
    • /
    • 2011
  • In this paper, it was compared the characteristics of the stress and settlement that occur from a track on the ground using a model test and has quantitatively analyzed the difference based on stress path and effect of the rotation of principal stress. Under identical roadbed conditions, the settlement generated by moving wheel loads were found to be 6 times and 3 times larger than that from static loads and cyclic loads, respectively. The deviator stress affecting shear deformation and the length of stress path generated by moving loads were twofold or greater increase than those by static loads. Furthermore, the stress path generated by moving loads was approached more closely to Mohr-Coulomb failure criteria compared to that by static loads. Also, it was found that ballasted track was occurred about 60% of maximum stress at $40^{\circ}$ of the rotation angle of principal stress and was affected with rotation of principal stress with moving wheel loading condition.

Design of Regional Coverage Low Earth Orbit (LEO) Constellation with Optimal Inclination

  • Shin, Jinyoung;Park, Sang-Young;Son, Jihae;Song, Sung-Chan
    • Journal of Astronomy and Space Sciences
    • /
    • v.38 no.4
    • /
    • pp.217-227
    • /
    • 2021
  • In this study, we describe an analytical process for designing a low Earth orbit constellation for discontinuous regional coverage, to be used for a surveillance and reconnaissance space mission. The objective of this study was to configure a satellite constellation that targeted multiple areas near the Korean Peninsula. The constellation design forms part of a discontinuous regional coverage problem with a minimum revisit time. We first introduced an optimal inclination search algorithm to calculate the orbital inclination that maximizes the geometrical coverage of single or multiple ground targets. The common ground track (CGT) constellation pattern with a repeating period of one nodal day was then used to construct the rest of the orbital elements of the constellation. Combining these results, we present an analytical design process that users can directly apply to their own situation. For Seoul, for example, 39.0° was determined as the optimal orbital inclination, and the maximum and average revisit times were 58.1 min and 27.9 min for a 20-satellite constellation, and 42.5 min and 19.7 min for a 30-satellite CGT constellation, respectively. This study also compares the revisit times of the proposed method with those of a traditional Walker-Delta constellation under three inclination conditions: optimal inclination, restricted inclination by launch trajectories from the Korean Peninsula, and inclination for the sun-synchronous orbit. A comparison showed that the CGT constellation had the shortest revisit times with a non-optimal inclination condition. The results of this analysis can serve as a reference for determining the appropriate constellation pattern for a given inclination condition.

The Steering Characteristics of Military Tracked Vehicles with Considering Slippage of Roadwheel (로드휠의 슬립을 고려한 군용 궤도차량의 조향특성에 관한 연구)

  • Lim, Won-Sik;Yoon, Jae-Seop;Kang, Sang-Wook
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.57-66
    • /
    • 2009
  • In this paper, the steering characteristics of tracked vehicles are studied for the improvement of steering performance. The important design factor of military vehicles is high mobility. It is influenced by weight of a vehicle, engine capacity, power-train, and steering system. The military vehicle, which is equipped with caterpillar, has unique steering characteristics and is quite different from that of a wheeled vehicle. The steering of tracked vehicles is operated in the power pack due to different speeds of both sprockets. Under cornering conditions, power split and power regeneration are happened in the power pack. In case of power regeneration, power is transferred outside track after adding engine power and power inputted inside track from the ground. However, excessive power regeneration is transferred in the power pack. It damages mechanical elements. Therefore, it is necessary to analyze the steering system and check mentioned problem above. In this study, the detailed dynamic model of steering system is presented, which includes slippage between track and roadwheel, inertia force, and inertia moment. Finally, our model is compared with the Kitano model and we verified the validity of the model.

Highspeed Train : Sound Power and Noise Propagation Characteristics (고속철도의 소음 특성과 전파현상)

  • 김정태;은희준
    • Journal of KSNVE
    • /
    • v.6 no.3
    • /
    • pp.349-355
    • /
    • 1996
  • For a rail traffic noise, a typical source has a length of 200m - 400m so that the noise pollution areas have been located in the transition regions where the sound level drops between 3dB/dd and 6dB/dd. Therefore, in this region, parameters such as a horizontal distance from the track, the geometry of the ground surface, the environmental effect, and the boundary impedance condition play import roles, especially in our nation's situation. In this study, modelling techniques for the finite length of noise source have been investigated in order to evaluate the rail traffic noise level. Then. noise correction value .${\Delta}$SPL for various location in the track region is represented by the non-dimensionalized horizontal and parallel distance from the track. As an application, a high speed train is examined. Beas on the noise data measured for a Eurostar in France, the sound power value per unit length $H_1$is calcuated. It turns out that$H_1$is 109 dB. Overall sound power from the highspeed train to be serviced in our country is expected to 135 dBA.

  • PDF

Study of a Variable Single-tracked Crawler for Overcoming Obstacles (가변형 단일 궤도를 이용한 장애물 극복방법에 관한 연구)

  • Kim, Jee-Hong;Lee, Chang-Goo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.4
    • /
    • pp.391-395
    • /
    • 2010
  • In our paper, we propose an asymmetric single-tracked wheel system, and describe its structure and the method for maintaining the length of a transformable track system. And the method is reducing the gap of lengths. Therefore, we propose an efficient structure for transforming and explain motions with kinematics. Our transformable shape single-tracked mobile system has an advantage to overcome an obstacle or stairs by the variable arms in the single unity track system. But we will make the variable shape of tracked system get a drive that has a force to stand against a wall. In this case, we can consider this system to a rigid body and have a notice that this single tracked system is able to get vary shape with the variable arm angle. Considering forces balance along x-axis and y-axis, and moments balance around the center of the mass we have. If this rigid body is standing against a wall and doesn't put in motion, the force of flat ground and the rigid body sets an equal by a friction. In the same way, the force of a wall and the rigid sets an equal by a friction.