• Title/Summary/Keyword: ground strength

Search Result 1,803, Processing Time 0.028 seconds

Properties of Compressive Strength of Mortar Based on High-activated Blast Furnace Slag and Possibility of Concrete Secondary Products (고활성 고로슬래그 미분말 모르타르의 압축강도 발현 특성 및 콘크리트 2차 제품용 결합재 활용 가능성 검토)

  • Lim, Jae-Hyun;Kim, Gyu-Yong;Koo, Kyung-Mo;Kim, Hong-Seop;Yoon, Min-Ho;Lee, Bo-Kyeong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.66-67
    • /
    • 2013
  • Replacing a large amount of ground granulated blast furnace slag is limited because early age strength is low due to latent hydraulic property despite excellence of long-term strength. This study aimed to examine produceableness of high-activated ground granulated blast furnace slag using slag by-product from steel process. As experimental variable, the properties of strength development were analyzed by setting fineness and replacement ratio of slag by-product, curing conditions, and W/B. The results of study showed that high-activated ground granulated blast furnace slag using slag by-product as an activator improve the compressive strength of mortar. It is expected to be used as binder for secondary product of concrete considering curing and mixing conditions because high-activated ground granulated blast furnace slag can be hydrated by itself.

  • PDF

The Analysis for Electric Field Strength on the Ground Level from DMB Transponder in Stratosphere HAPS (성층권 고공항등체 DMB 트랜스폰더의 지표면 수신전계 강도 분석)

  • Kuk Jay-Il;Chinn Yong-Ok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.1A
    • /
    • pp.16-22
    • /
    • 2006
  • This papers described with the analysis for electric Field strength on ground level transmitted from DMB transponder in stratosphere HAPS. It is compare with horizontal propagated ground wave. Resultly we confirm the equal strength a electric field on ground level between hish altitude vertical propagated wave and horizontal ground wave, also, is only 1W compare with terrestrial facility as transmitted output power for the DMB transponder in stratosphere HAPS. It is corresponding to 1Kw as same power value in ground propagated wave. Lastly it is new material wave source and also we concluding remarks as ubiquitous communication networking media.

Influence of ground pumice powder on the bond behavior of reinforcement and mechanical properties of self-compacting mortars

  • Benli, Ahmet;Karatas, Mehmet;Sastim, M. Veysel
    • Computers and Concrete
    • /
    • v.20 no.3
    • /
    • pp.283-290
    • /
    • 2017
  • The aim of this study is to investigate the effect of the bond strength of self-compacting mortars (SCMS) produced from ground pumice powder (GPP) as a mineral additive. In this scope, six series of mortars including control mix were prepared that consist of 7%, 12%, 17%, 22% and 27% of ground pumice powder by weight of cement. A total of 54 specimens of $40{\times}40{\times}160mm$ were produced and cured at the age of 3, 28 and 90-day for compressive and tensile strength tests and 18 specimens of $150{\times}150{\times}150mm$ mortar were prepared and cured at 28 days for bond strength tests. Flexural tensile strength and compressive strength of $40{\times}40{\times}160mm$ specimens were measured at the curing age of 7, 28 and 90-day. Mini V-funnel flow time and mini slump flow diameter tests were also conducted to obtain rheological properties. As a result of the study, it was observed that the SCMs containing 12% of GPP has the highest bond strength as compared to control and GPP mortars. Compressive strength slightly increased up to 12% of GPP.

Seam Tensile Strength of Geotextile Mat and Stress Increment Analysis (지오텍스타일 봉합 인장강도와 지반의 응력증가분 해석)

  • Chae, Yu-Mi;Kim, Jae-Hong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.73-79
    • /
    • 2018
  • In the west coast, south coast, and river basin, the use of geotextile mats has been increasing to improve the soft ground for making industrial facilities space and farmland. As an initial step to improve the vast and soft ground, the geotextile mats are laid and bonded to increase the bearing capacity of the wide ground for supporting construction equipment. Seam strength of geotextile mats exert a force only about 50% of the tensile strength of the fabric, which causes problems such as uplift and sinking in the soft ground. In this study, various types of geosynthetic matting techniques were investigated and the tensile strength of each method was compared and analyzed. Numerical analysis shows that stress increment in the ground due to the overburden load decreases when the seam strength of the geosynthetics mats is increased. When the seam strength was increased to 60, 70 and 80%, the bearing capacity of ground by geotextile mat was increased.

Ductility and inelastic deformation demands of structures

  • Benazouz, Cheikh;Moussa, Leblouba;Ali, Zerzour
    • Structural Engineering and Mechanics
    • /
    • v.42 no.5
    • /
    • pp.631-644
    • /
    • 2012
  • Current seismic codes require from the seismically designed structures to be capable to withstand inelastic deformation. Many studies dealt with the development of different inelastic spectra with the aim to simplify the evaluation of inelastic deformation and performance of structures. Recently, the concept of inelastic spectra has been adopted in the global scheme of the performance-based seismic design through capacity-spectrum methods. In this paper, the median of the ductility demand ratio for 80 ground motions are presented for different levels of normalized yield strength, defined as the yield strength coefficient divided by the peak ground acceleration (PGA). The influence of the post-to-preyield stiffness ratio on the ductility demand is investigated. For fixed levels of normalized yield strength, the median ductility versus period plots demonstrated that they are independent of the earthquake magnitude and epicentral distance. Determined by regression analysis of the data, two design equations have been developed; one for the ductility demand as function of period, post-to-preyield stiffness ratio, and normalized yield strength, and the other for the inelastic deformation as function of period and peak ground acceleration valid for periods longer than 0.6 seconds. The equations are useful in estimating the ductility and inelastic deformation demands for structures in the preliminary design. It was found that the post-to-preyield stiffness has a negligible effect on the ductility factor if the yield strength coefficient is greater than the PGA of the design ground motion normalized by gravity.

Strength and Deformation Characteristics, and Numerial Analysis for Cement Admixed Clay and Composite Ground (시멘트 혼합토 및 복합지반의 강도, 변형 특성 및 수치해석)

  • Jeon, Jesung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.8
    • /
    • pp.51-58
    • /
    • 2014
  • In this research, the composite grounds including original clay and soil-cement were constructed for conducting uniaxial compression test. Strength and deformation properties were analysed using results of laboratory tests with variations of water content of clay, replacement ratio and cement content. Numerical simulation using 3D distinct element method was conducted for soil cement. For strength of composite ground that contains more than cement contents of 15 %, it is more effective to increase cement content than increase of replacement ratio. Strength and elastic modulus of composite ground could be predicted by regression equations using uniaxial compression strength of clay, cement content of soil cement and replacement ratio. For strength and elastic modulus of soil cement, which is most important things for predicting final strength and elastic modulus of composite ground, numerical simulation using the distinct element method adapted bonding model could be used to verify laboratory test, and predict strength and elastic modulus.

A Study on Estimation Model of Strength Development of Concrete Using Fly Ash and Ground Granulated Blast-Furnace Slag (플라이애시 및 고로슬래그 미분말을 사용한 콘크리트의 강도 발현 예측 모델식 연구)

  • Choi, Yun-Wang;Park, Man-Seok;Jeong, Jae-Gwon;Choi, Byung-Geol;Kim, Kyung-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.5
    • /
    • pp.87-93
    • /
    • 2013
  • Recently, the amount of the mineral admixture including fly ash and ground granulated blast-furnace slag was increased for the purpose of $CO_2$ gas emission reduction in the concrete industry. However, in the case of korea, estimation model of strength development in concrete structural design code was prescribed a constant value according to cement type and curing method about the portland cement. therefore, the properties of strength development according to time of concrete using fly ash and ground granulated blast-furnace slag does not reflected estimation model of strength development. Accordingly, this paper was evaluated strength according to time on the concrete strength range using fly ash and ground granulated blast-furnace Slag and the strength development constant ${\beta}_{sc}$ of concrete according to the kind of the mineral admixture and mixing ratio was proposed.

A Study on the Field Strength Prediction of a Ground-wave Based Time Broadcasting Transmitter Station in the Korean Peninsula

  • Lee, Sun Yong;Choi, Yun Sub;Hwang, Sang-Wook;Yang, Sung-Hoon;Lee, Chang-Bok;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.3 no.2
    • /
    • pp.83-90
    • /
    • 2014
  • In this study, to improve an existing ground-wave based time broadcasting system, a study that predicts the field distribution and field strength of the transmitted signal of a new ground-wave based time broadcasting system was performed. The prediction area was assumed to be the Korean peninsula; and to reflect the mountainous terrain of the Korean peninsula in the prediction of the variations of field distribution and field strength, a new prediction method based on the Monteath model was proposed and utilized. As field distribution changes depending on the position of a transmitter station, potential sites for the transmitter station were selected considering the geographical characteristics. In this regard, the ground conductivity information of North Korea cannot be obtained, and thus, the ground conductivity of the North Korean region was reflected considering the geological characteristics of South Korea and North Korea. Based on this, the variations of field distribution and field strength were predicted by setting the Korean peninsula as the prediction area, and the prediction results depending on the position of the transmitter station were discussed.

A Study on the Application of MJM for Ground (MJM 주입공법의 현장적용성에 관한 연구)

  • Chun, Byung-Sik;Choi, Choon-Sik;Roh, Jong-Ryun;Lee, Seung-Joon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.437-442
    • /
    • 2005
  • The high pressure jet grouting method is mainly used in the grouting. But, this method has problems that the scale and strength of improved body is not constant with ground condition. Considering these problems, triple rod MJM that results in the high-strength effect by the technology of the injected ${\phi}7mm$ cement mortar was developed. In this MJM, the unconfined strength is estimated with the various combination ratio and engineering characteristic, strength improvement effect of improved body, was checked through the field test. It is known that the application of MJM was verified with ground and construction condition.

  • PDF

Setting and Strength Properties of Mortar Containing Steel Furnace Slag Dust

  • Choi, Yun-Wang;Chung, Jee-Seung;Moon, Dae-Joong;Shin, Hwa-Cheol;Jang, Lee-Duck
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.193-196
    • /
    • 2003
  • In this paper, the experimental investigation for the setting properties of cement paste, the consistency and strength properties of mortar with steel furnace slag dust was performed and compared with those of cement paste and mortar with ground granulated blast furnace slag. When steel furnace slag dust was replaced with normal portland cement, setting time and flow value indicated to good results like as mortar with ground granulated blast furnace slag. However, mortar with steel furnace slag dust expressed to appreciably strength devaluation according to containing ratio, and did not indicate the pozzolanic reaction like as ground granulated blast furnace slag.

  • PDF