• Title/Summary/Keyword: ground strength

Search Result 1,797, Processing Time 0.027 seconds

Development of Uneven Excavation Method for Reinforcement of Ground Slope (사면보강을 위한 요철형 암반굴착 공법개발)

  • Kim, Hyun-Gi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.259-266
    • /
    • 2020
  • In this study, required drill bits and excavation methods were developed for an uneven drilling method that can solve the problem of performance degradation of rock bolts. The developed drill bit's excavation performance was verified using rock with a strength of 100 MPa or more. In addition, for the relative evaluation of the uneven excavation method, experimental specimens were prepared for models with and without irregularities, and tests were performed. As a result of the experiment, the model with unevenness exhibited an average critical draw resistance of 801.6 kN, which is about 1.7 times the value of 468.7 kN for the model without unevenness, thus confirming the effect sufficiently. Therefore, it is expected that the resistance performance will significantly increase despite an increase in the uneven hole diameter of 20 mm. In the future, the results of this study could be used as basic data when performing other studies using numerical analysis models and performance verification through experiments to obtain an optimized rock forming method.

Flexural Behavior of RC Beam Using High Volume Fly-Ash Cement (다량치환된 플라이애시 시멘트를 사용한 철근콘크리트 보의 휨거동)

  • Ahn, Young-Sun;Cha, Yeong-Dal
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.2
    • /
    • pp.128-136
    • /
    • 2014
  • It is known that the best way to recycle fly ash is to use in concrete. It is impossible to bury in the ground this fly ash recently, so it is trying to use high volume fly ash concrete. Nevertheless, recent main research topics are focused in the part of material only. However, it is necessary to perform the researches about elasticity modulus, stress-strain relationship and structural behavior. Therefore, in this paper, 18 test members were manufactured with 3 test variables, namely fly ash replacement ratio 0, 35, 50%, concrete compressive strength 20, 40, 60MPa and 2 tensile steel ratio. 18 test members were tested for flexural behavior. From the test results, there were no differences between 35, 50% high volume fly ash cement concrete and ordinary concrete without fly ash (FA=0%). In order to evaluate the HVFAC flexural behavior, Analytical model was proposed and the computer program was developed. There were no differences between test results and analysis results. So, the proposed analytical model was reasonable.

A Study on the Finite Element Analysis and Management Criteria by Applying UPRS Method in the Subway Station (기존 지하철정거장 비개착공법 적용시 유한요소 해석과 관리기준에 관한 연구)

  • Cho, Byeong Joon
    • Journal of Korean Society of Disaster and Security
    • /
    • v.12 no.4
    • /
    • pp.43-52
    • /
    • 2019
  • To analyze the influence on the stability, resulting from application of upgrade pipe roof structure (UPRS) method to the structure existed under subway Station, physical properties of a ground, elasticity and elasto-plastic theories, including displacement analysis of finite elements, stress analysis of finite elements, displacement caused by steel pipe propulsion and internal excavation, and stress change in a steel pipe, were introduced. Then, the influence on structural stability when applying the UPRS method was compared and reviewed based on the construction management standard of the Ministry Land, Infrastructure and Transport and foreign sources, using numerical analysis with a model which assumes that each microelement divided into a structurally stable point consists of the connection of finite points. As a result of the finite element analysis, 7.21 mm maximum displacement, 1/3,950 angular displacement, 70.28 MPa bending compressive stress of steel pipe structure constructed with UPRS (non-excavation) method and 477.38 MPa maximum shear strength were within their allowable standards (25.00 mm, 1/500, 210.00 MPa and 120.00 MPa, respectively), and therefore, the results showed that the design and construction are stable.

A Study on Environmental and Economic Analysis for Each Treatment of Sewage Sludge(III) - Results of Environmental Assessment - (하수슬러지 처리방법별 환경성 및 경제성 분석에 대한 연구(III) - 환경성 분석 중심으로 -)

  • Bae, Jisu;Lee, Suyoung;Cho, Yuna;Kwon, Younghyun;Lee, Dongjin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.3
    • /
    • pp.5-13
    • /
    • 2016
  • This study investigated the environmental and economical assessment for sewage sludge treatment options including biogasification, incineration, carbonization, drying, and solidification. For the economical feasibility the 30 plants with anaerobic digestion treatment and the 17 plants without anaerobic digestion treatment were investigated. In regarding to the environmental assessment, the air emission pollutants (SOx, NOx, etc) from incineration and carbonization plants were assessed and 1~34 % of emission limits was emitted. Drying and solidification plants emitted about 30 % of odour limits. And the rest of the pollutants were emitted either at not-detectable level or at below the limits. When the by-products from the solidification treatment was used as landfill cover materials, the unconfined compression strength could be below the limit and it could cause an unsafe condition for those passing vehicles and the possibility of the ground subsidence. There has been a maintenance difficulty due to frequent blockage and operational failure. The result of the comparison of sewage sludge treatment options showed that anaerobic digestion+incineration was the most economically feasible considering incineration and drying. For smaller treatment capacity, solidification was the most economically feasible considering carbonization and solidification and anaerobic digestion+carbonization was the most economically feasible considering carbonization and solidification.

Development of Large-area Plasma Sources for Solar Cell and Display Panel Device Manufacturing

  • Seo, Sang-Hun;Lee, Yun-Seong;Jang, Hong-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.148-148
    • /
    • 2011
  • Recently, there have been many research activities to develop the large-area plasma source, which is able to generate the high-density plasma with relatively good uniformity, for the plasma processing in the thin-film solar cell and display panel industries. The large-area CCP sources have been applied to the PECVD process as well as the etching. Especially, the PECVD processes for the depositions of various films such as a-Si:H, ${\mu}c$-Si:H, Si3N4, and SiO2 take a significant portion of processes. In order to achieve higher deposition rate (DR), good uniformity in large-area reactor, and good film quality (low defect density, high film strength, etc.), the application of VHF (>40 MHz) CCP is indispensible. However, the electromagnetic wave effect in the VHF CCP becomes an issue to resolve for the achievement of good uniformity of plasma and film. Here, we propose a new electrode as part of a method to resolve the standing wave effect in the large-area VHF CCP. The electrode is split up a series of strip-type electrodes and the strip-type electrodes and the ground ones are arranged by turns. The standing wave effect in the longitudinal direction of the strip-type electrode is reduced by using the multi-feeding method of VHF power and the uniformity in the transverse direction of the electrodes is achieved by controlling the gas flow and the gap length between the powered electrodes and the substrate. Also, we provide the process results for the growths of the a-Si:H and the ${\mu}c$-Si:H films. The high DR (2.4 nm/s for a-Si:H film and 1.5 nm/s for the ${\mu}c$-Si:H film), the controllable crystallinity (~70%) for the ${\mu}c$-Si:H film, and the relatively good uniformity (1% for a-Si:H film and 7% for the ${\mu}c$-Si:H film) can be obtained at the high frequency of 40 MHz in the large-area discharge (280 mm${\times}$540 mm). Finally, we will discuss the issues in expanding the multi-electrode to the 8G class large-area plasma processing (2.2 m${\times}$2.4 m) and in improving the process efficiency.

  • PDF

Mechanical Properties and Degradability of Bio-degradable Agricultural Transplanting Pot Containing Rice By-product (벼 부산물을 함유한 생분해성 육묘폿트의 기계적 성질 및 분해 특성)

  • Han, Sang-Ik;Kang, Hang-Won;Byun, Dae-Woo;Jang, Ki-Chang;Seo, Woo-Duck;Ra, Ji-Eun;Kim, Jun-Young;Choi, Kyung-Jin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.56 no.1
    • /
    • pp.44-49
    • /
    • 2011
  • The bio-degradable transplanting pot containing rice by-product (rice-hull and rice-bran) were developed, and tested their ability for agronomic use. Rice by-products were crosslinked with biodegradable aliphatic ally aromatic copolyesters or urea resin for making transplanting pot. Mechanical properties and degradability of these pots were measured and compared to those of the Jiffy pot (commercially used bio-degradable pot). Mechanical strength was higher than that of Jippy pot, and bio-degradability was excellent under the actual field condition. In addition, the pot could be degraded within 3 months under the ground. Our result indicated bio-degradable pot containing rice by-products has a great potential for such agronomic use.

Soil Characteristics according to the Geological Condition of Natural Slopes in Busan Area (부산지역 자연사면의 지질조건에 따른 토질특성)

  • Kim, Kyeong-Su
    • The Journal of Engineering Geology
    • /
    • v.17 no.3
    • /
    • pp.471-481
    • /
    • 2007
  • The Landslide in natural slope is occurred mostly by a heavy rain of the summer. This landslide is influenced in soil property of the surface than the rock mass. Soils in natural slope are created by weathering phenomena of the bedrock. These soils differed to the geological conditions such as sedimentary rock, metamorphic rock and volcanic rock. Therefore, estimation of landslide in natural slope is the most important analysis of the bedrock distributions and soil characteristics. This study analyzed the soil property to the natural slopes of Busan area where is distributed to volcanic rock, granite and sedimentary rock. Soil sample conducted various soil tests for estimate the soil physical property and soil engineering characteristics, and analysis of the correlation of geological conditions. In the experiment result, soils were mainly classified by a clayey sand. It is also established that $1.07{\sim}1.99kg/cm^3$ for wet density, $28.2{\sim}39.6^{\circ}$ for angle of shearing resistance, and $8.10{\times}10^{-5}{\sim}8.38{\times}10^{-2}cm/sec$ for coefficient of permeability. From the physical parameter, the soils are estimated to the permeable ground with good shear strength, and soil properties are showed a differential tendency for each geological condition.

Proposal of stability standards for slopes reclaimed by soils mixed with stone dust (석분슬러지 혼합토 매립사면에 대한 안정성 기준 제안)

  • Song, Young-Suk;Kim, Kyeng-Su
    • The Journal of Engineering Geology
    • /
    • v.17 no.3
    • /
    • pp.425-434
    • /
    • 2007
  • In this paper, the stability standards of slopes reclaimed by soils mixed with stone dust were proposed to manage the stone dust as recovery soils. First of all, the mixed ratio between stone dust and natural soil is classified into 5 groups, and a series of soil test was performed in each group. As the results of tests, the shear strength and the maximum dry unit weight were increased in decrease of the mixed ratio of stone dust. On the basis of the investigation to the safety factor standards of embankment slopes in and outside the country, a slope stability rank of slopes reclaimed by mixed soils were divided into 3 stages such as unstable stage, attention stage and stable stage. The slope angle, the slope height and the mixed ratio with stone dust were proposed by the result of stability analysis of slopes reclaimed by mixed soils. As the result of slope stability analysis, the slope angle of 1 : 1.8 at the reclaimed slope should be constructed in case of the slope height of 10 m. Also, the slope angle of 1 : 1.8 and the mixed ratio of stone dust less than 50% should be constructed in case of the slope height of 15 m. The analysis result of reclaimed slope constructed inside the quarry is similar to that of reclaimed slope constructed on the open ground in same conditions of the slope angle, the slope height and the mixed ratio with stone dust. The proposed stability standards of slopes reclaimed by soils mixed with stone dust can be used practically at the quarrying site.

Applicability of Particle Crushing Model by Using PFC (PFC를 이용한 입자 파쇄 모델의 적용성 연구)

  • Jeong, Sun-Ah;Kim, Eun-Kyung;Lee, Seok-Won
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.1
    • /
    • pp.47-57
    • /
    • 2010
  • Granular soils having a large particle size have been used as a filling material in the construction of foundation, harbor, dam, and so on. Consequently, the shear behavior of this granular soil plays a key role in respect of stability of structures. For example, soil particle crushing occurring at the interface between structure and soil and/or within soil mass can cause a disturbance of ground characteristics and consequently induce issues in respect of stability of structures. In order to investigate the shear behavior according to an existence and nonexistence of particle crushing, numerical analyses were conducted by using the DEM (Discrete Element Method)-based software program PFC2D (Particle Flow Code). By dividing soil particle bonding model into crushing model and noncrushing model, total four particle bonding models were simulated and their results were compared. Noncrushing model included one ball model and clump model, and crushing model included cluster model and Lobo-crushing model. The combinations of soil particle followed the research results of Lobo-Guerrero and Vallejo (2005) which were composed of eight circles. The results showed that the friction angle was in order of clump model > cluster model > one ball model. The particle bonding model compared to one ball model and noncrushing model compared to crushing model showed higher shear strength. It was also concluded that the model suggested by Lobo-Guerrero and Vallejo (2005) is not appropriate to simulate the soil particle crushing.

  • PDF

Experimental Study of Frost Heaving using Temperature Controlled Triaxial Cell (투명 온도제어형 삼축셀을 이용한 흙의 동상 실내실험)

  • Ryu, Byung-Hyun;Jin, Hyun-Woo;Lee, Jangguen
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.6
    • /
    • pp.23-31
    • /
    • 2016
  • Nowadays abnormal coldness happens frequently in Korea and frost heaving causes unexpected ground deformation which results in severe problems for structures such as roadway, railroad and cutoff slope. 'Frost heave' as one of the primary phenomenon is considered to be an important factor together with 'adfreeze bond-strength' and 'creep deformation' for structural design process in permafrost area. Therefore, the fundamental study for frost heave has to be preceded for design of geo-structures in cold region. While various experimental apparatuses have been developed, there still exist a certain level of limitation to evaluate the frost-heave characteristics as design parameters. There are no standard testing method and criteria for analyzing frost heaving in Korea because temperature controlled testing apparatuses including a freezing chamber are expensive. In this paper, a new standard freezing and thawing testing apparatus is introduced, which simulates various freezing and thawing conditions in a soil specimen by using a temperature controlled triaxial cell. Frost heaving tests were performed to assess the new testing apparatus and experimental procedure to evaluate frost heaving for soils is proposed.