• Title/Summary/Keyword: ground state solution

Search Result 69, Processing Time 0.026 seconds

Study on the Water Management to get High Quality of Drinking Water (이상적인 음료수 공급을 위한 수질관리에 관한 연구)

  • 김형석;신현덕;박경석
    • Journal of environmental and Sanitary engineering
    • /
    • v.6 no.1
    • /
    • pp.7-25
    • /
    • 1991
  • Until now, pure drinking water grnerally menas the water without taste, odor, general bacteria, coliform, and other exotic substance. Such a definition has been changing recently due to the finding of numerous other inorganic and organic substances unknown to us. 10 years ago, major causes of death were infectious agents and parasites contained in water, but recently, it has become apparent that some substances contained in drinking water cause cancer and heart diseases. We must drink about 2L of water everyday in order to maintain healthy condition. Waters used for drinking include tap water, well water, spring water, filtered water, etc., but the quality of drinking water has more polluted due to the industrial development and population increase. For example, industrial waste waters from industrial plants pollute the water supply sources ; toxic substances contained in the waste waters pollute the ground water sources by penetrating the geological strata, and municipal, livestock, public building waste waters also pollute the water supply sources. Sometimes, the polluted surface waters were announced to be polluted by various kinds of orgainc substance, and it is reported that the pollution of ground water by orga nic substances has few in number but high in its concectration comparing with those of surface water. As the water quality pollution level increases, so the amount of disinfectant also increase. For example, chlorine solution, one of widely used disinfectants, creates trihalomethane(THM), a carcinogen, and halogen compounds. According to Oliver, through chlorine disinfection process, humine substance and chlorine create bolatile organic halide and nonvolatile organic halide by chemical reaction. There are tens or hundreds filtering devices, but filtering principles and maintenance metjhods are different, so their efficiency tests are needed. According to Smith, the effeciency tests aginst over 30 Ameican filtering devices show that 10 devices can remove 85% of volatile organics and further studies on filtered waters are underway. In consideration of important impacts of polluted drinking water on national health, authors studied the state of water quality pollution against tap water used as drinking water, filtration device passed water, ground water, and conserved drinking water ; tested the efficiency of filtration devices for tap water ; tried to sep up the detection method by using ion chromatography based on negative ion and positive ion by using single column, and attemped the simple filtration method for general households.

  • PDF

Consolidation Behaviour of Dredged Clay Ground Improved by Horizontal Drain Method (수평배수공법에 의해 개량된 준설점토지반의 압밀거동에 관한 연구)

  • 김형주;원명수
    • Geotechnical Engineering
    • /
    • v.13 no.1
    • /
    • pp.137-146
    • /
    • 1997
  • In this study, a large consolidation test was carried out to estimate the consolidation behaviour of dredged clay ground improved by horizontal drain using plastic board drain with a vacuum pressure. The test results were analyzed by a numerical simulation using potential consolidation theory applied to a hollow cylinder. The rapid decreases in pore pressure and the drain speed in the plastic board indicate that the consolidation occurred quickly after the vacuum state was applied to the test soil. According to the numerical analysis obtained by applying the linear potential consolidation theory to a clay hollow cylinder with external radial drainage, the pore pressure is affected by the strain and the permeability of the soil rather than by the diffusion types. Therefore, measured surface settlement agreed with the numerical solution at the point where consolidation pressure increasing rate u: -0.5. Also the behaviour of the clay layer settlement in the place where the drain was installed was similar to that shown in Barron's consolidation theory. Finally, the design and construction procedure including the selection of the appropriate arrangement of horizontal drains were discussed based on the results of the laboratory tutsts. It is also shown that the potential consolidation theory make it possible to predict consolidation behaviour in the field using horizontal drains exactly.

  • PDF

Vision-based Obstacle State Estimation and Collision Prediction using LSM and CPA for UAV Autonomous Landing (무인항공기의 자동 착륙을 위한 LSM 및 CPA를 활용한 영상 기반 장애물 상태 추정 및 충돌 예측)

  • Seongbong Lee;Cheonman Park;Hyeji Kim;Dongjin Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.6
    • /
    • pp.485-492
    • /
    • 2021
  • Vision-based autonomous precision landing technology for UAVs requires precise position estimation and landing guidance technology. Also, for safe landing, it must be designed to determine the safety of the landing point against ground obstacles and to guide the landing only when the safety is ensured. In this paper, we proposes vision-based navigation, and algorithms for determining the safety of landing point to perform autonomous precision landings. To perform vision-based navigation, CNN technology is used to detect landing pad and the detection information is used to derive an integrated navigation solution. In addition, design and apply Kalman filters to improve position estimation performance. In order to determine the safety of the landing point, we perform the obstacle detection and position estimation in the same manner, and estimate the speed of the obstacle using LSM. The collision or not with the obstacle is determined based on the CPA calculated by using the estimated state of the obstacle. Finally, we perform flight test to verify the proposed algorithm.

The Effect of Rock Joints and Ground Water on the Thermal Flow through Rock Mass (절리 및 지하수가 암반의 열전파 특성에 미치는 영향)

  • 박연준;유광호;신희순;신중호
    • Tunnel and Underground Space
    • /
    • v.12 no.3
    • /
    • pp.220-228
    • /
    • 2002
  • Thermal flow through jointed rock mass was analyzed by numerical methods. The effect of a single set of joints on the heat conduction was analyzed by one-dimensional model and compared with the analytical solution. When a joint is completely dry, the joint behaves as a thermal break inducing jumps in temperature distribution even at steady state. Therefore when joints are completely dry, individual joint has to be taken into consideration to get a good result. When joints are partially or fully saturated, the thermal conductivity of the joints increases drastically and the jumps in temperature distribution become less severe. Therefore the effect of joint in heat conduction can be well absorbed by continuum anisotropic model whose thermal properties represent overall thermal properties of the intact part and the discontinuities. Since the effect of joints becomes less important as the degree of the saturation increases, the overall thermal response of the rock mass also becomes close to isotropic. Therefore it can be concluded that a great effort has to be made to obtain a precise in-situ thermal properties in order to get a good prediction of the thermal response of a jointed rock mass.

Damage-based optimization of large-scale steel structures

  • Kaveh, A.;Kalateh-Ahani, M.;Fahimi-Farzam, M.
    • Earthquakes and Structures
    • /
    • v.7 no.6
    • /
    • pp.1119-1139
    • /
    • 2014
  • A damage-based seismic design procedure for steel frame structures is formulated as an optimization problem, in which minimization of the initial construction cost is treated as the objective of the problem. The performance constraint of the design procedure is to achieve "repairable" damage state for earthquake demands that are less severe than the design ground motions. The Park-Ang damage index is selected as the seismic damage measure for the quantification of structural damage. The charged system search (CSS) algorithm is employed as the optimization algorithm to search the optimum solutions. To improve the time efficiency of the solution algorithm, two simplifying strategies are adopted: first, SDOF idealization of multi-story building structures capable of estimating the actual seismic response in a very short time; second, fitness approximation decreasing the number of fitness function evaluations. The results from a numerical application of the proposed framework for designing a twelve-story 3D steel frame structure demonstrate its efficiency in solving the present optimization problem.

Synthesis and Piezoelectric Properties of PZT Ceramics will Improved Process (공정개선을 통한 PZT 세라믹스의 합성 및 압전특성)

  • 윤철수;송태권;박태곤;박인용;김명호
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.11
    • /
    • pp.904-911
    • /
    • 2001
  • High-density lead zirconate titanate(Pb(Zr$\_$0.53/Ti$\_$0.47/)O$_3$, PZT) ceramics were fabricated by a new milling-precipitation(MP) process improved from the conventional solid state process. This process was progressed by a milling impregnation through mixing ZrO$_2$ and TiO$_2$ powders with lead nitrate(Pb(NO$_3$)$_2$) water solution in zirconia ball media, and then milling precipitation was induced from precipitation of PbC$_2$O$_4$ by adding ammonium of oxalate monohydrate((NH$_4$)$_2$C$_2$O$_4$$.$H$_2$O) as a precipitant. As a result of this process, single-phase perovskite structure was formed at the calcination temperature of 750$\^{C}$ for Pb(Zr$\_$0.53/Ti$\_$0.47/)O$_3$ powders. In addition, the highest density at the sintering temperature of 1100$\^{C}$ was obtained, because of the highly sinterable PZT Powders ground through the re-milling process. Piezoelectric and dielectric properties of sintered sample were improved by MP process.

  • PDF

Application of Subirrigation Using Capillary Wick System to Pot Production

  • Lee, Chi-Won;So, In-Sup;Jeong, Sung-Woo;Huh, Moo-Ryong
    • Journal of agriculture & life science
    • /
    • v.44 no.3
    • /
    • pp.7-14
    • /
    • 2010
  • Alternative subirrigation way, capillary wick system (CWS) was tested to reduce labor cost, waste water, contamination of ground water, and use of fungicide compared to overhead irrigation system (OIS). CWS helped reduce remarkably the working hours for watering from 4 hours in OSI to just 5 minutes. Labor cost was saved 98% in CWS compared to OIS. By the physical characteristics of various growing media, 1 coconut coir+2 perlite (v/v) mixture was selected because it had an ideal distribution of three phase, e.g. 1 solid: 1 liquid: 2 gas phase. Medium mixture containing scoria had so high bulk and particle density to hurt root. In bark-containing medium, the liquid phase and the percent saturation of liquid phase with time elapsed was lower than that of other mixture. It meant that the mixture contained very low level of water. Application of CWS for cyclamen pot production played an important role in reducing the incident of fusarium wilt symptom from 18% in conventional over watering system to 4%. Cyclamen pot irrigated by capillary wick had shorter petiole and more leaves than those by overhead watering. As a result, this system was highly beneficial to get uniform pot products with high quality. It improved water and nutrient solution efficiency relative to conventional overhead irrigation system (OIS).

January 24, 2020 Sivrice Earthquake and the response of the masonry Haci Yusuf Tas (New) mosque

  • Firat, Fatih K.;Ural, Ali;Kara, Mehmet E.
    • Earthquakes and Structures
    • /
    • v.22 no.4
    • /
    • pp.331-343
    • /
    • 2022
  • Masonry structures are the most common structural systems that have been used almost all over the world from the earliest ages of history to the present day. These structural systems are often unfavorably affected by natural disasters such as earthquakes. The main reason for this is that they are built without sufficient engineering knowledge. On January 24, 2020, a severe earthquake occurred near the Sivrice District of Elazığ in eastern Turkey. According to the Turkish Directorate of Disaster and Emergency Management (AFAD), the magnitude of the earthquake was 6.8 and the focal depth 8 km. This earthquake caused damage and destruction to the masonry structures used extensively in the region. The Hacı Yusuf Taş (new) mosque in the Malatya city center, located about 64 km from the epicenter of the earthquake, was among the buildings affected by the earthquake. The mosque has smooth-cut stone walls and domes made of brick units. The main dome of the structure was severely damaged during the earthquake. In this study, information about the earthquake is first provided, and the damage to the mosque is then interpreted via photographs. In addition, two separate finite element models were produced, where the current state of mosque and solution suggestions are presented, and response spectrum analyses were carried out. According to these analyses and field observations, a buttress system to the main walls of the structure should be constructed in the direction which has little lateral rigidity.

Simulation of monopile-wheel hybrid foundations under eccentric lateral load in sand-over-clay

  • Zou, Xinjun;Wang, Yikang;Zhou, Mi;Zhang, Xihong
    • Geomechanics and Engineering
    • /
    • v.28 no.6
    • /
    • pp.585-598
    • /
    • 2022
  • The monopile-friction wheel hybrid foundation is an innovative solution for offshore structures which are mainly subjected to large lateral eccentric load induced by winds, waves, and currents during their service life. This paper presents an extensive numerical analysis to investigate the lateral load and moment bearing performances of hybrid foundation, considering various potential influencing factors in sand-overlaying-clay soil deposits, with the complex lateral loads being simplified into a resultant lateral load acting at a certain height above the mudline. Finite element models are generated and validated against experimental data where very good agreements are obtained. The failure mechanisms of hybrid foundations under lateral loading are illustrated to demonstrate the effect of the friction wheel in the hybrid system. Parametric study shows that the load bearing performances of the hybrid foundation is significantly dependent of wheel diameter, pile embedment depth, internal friction angle of sand, loading eccentricity (distance from the load application point to the ground level), and the thickness of upper sandy layer. Simplified empirical formulae is proposed based on the numerical results to predict the corresponding lateral load and moment bearing capacities of the hybrid foundation for design application.

Status of squeezed vacuum experiment and introduction to EPR (한국천문연구원의 진공양자조임 광원 개발 및 EPR 실험 소개)

  • Kim, Chang-Hee;Lee, Sungho;Park, June Gyu;Kim, Yunjong;Jeong, Ueejeong;Je, Soonkyu;Seong, Hyeon Cheol;Han, Jeong-Yeol
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.37.2-37.2
    • /
    • 2021
  • One of the main limitations to the ground- based gravitational-wave (GW) detector sensitivity is quantum noise, which is induced by vacuum fluctuations entering the detector output port. The replacement of this ordinary vacuum field with a squeezed vacuum field has proven to be effective approach to mitigate the quantum noise in the interferometer detector and it is currently used in advanced detectors. However, the current frequency-independent squeezed vacuum cannot reduce quantum radiation pressure noise at low frequencies. A possible solution to reduce quantum noise in the broadband spectrum is the injection of frequency-dependent squeezed (FDS) vacuum. We will report the current status of squeezing experiment at KASI and introduce to the EPR (Einstein-Podolsky-Rosen) entangled state of light, which can realize FDS light without the need for an additional, external cavity.

  • PDF