• Title/Summary/Keyword: ground motions

검색결과 893건 처리시간 0.02초

국내 액상화 평가를 위한 지진파 선정 (Selection of Ground Motions for the Assessment of Liquefaction Potential for South Korea)

  • 장영은;서환우;김병민;한진태;박두희
    • 한국지진공학회논문집
    • /
    • 제24권2호
    • /
    • pp.111-119
    • /
    • 2020
  • Recently, some of the most destructive earthquakes have occurred in South Korea since earthquake observations began in 1978. In particular, the soil liquefactions have been reported in Pohang as a result of the ML 5.4 earthquake that occurred in November 2017. Liquefaction-induced ground deformations can cause significant damage to a wide range of buildings and infrastructures. Therefore, it is necessary to take practical steps to ensure safety during an earthquake. In the current seismic design in South Korea, the Hachinohe earthquake and Ofunato earthquake recorded in Japan, along with artificial earthquakes, have been generally used for input motions in dynamic analyses. However, such strong ground motions are only from Japan, and artificial earthquake ground motions are different from real ground motions. In this study, seven ground motions are selected, including those recorded in South Korea, while others are compatible to the current design spectra of South Korea. The effects of the newly selected ground motions on site response analyses and liquefaction analyses are evaluated.

Viaduct seismic response under spatial variable ground motion considering site conditions

  • Derbal, Rachid;Benmansour, Nassima;Djafour, Mustapha;Matallah, Mohammed;Ivorra, Salvador
    • Earthquakes and Structures
    • /
    • 제17권6호
    • /
    • pp.557-566
    • /
    • 2019
  • The evaluation of the seismic hazard for a given site is to estimate the seismic ground motion at the surface. This is the result of the combination of the action of the seismic source, which generates seismic waves, the propagation of these waves between the source and the site, and site local conditions. The aim of this work is to evaluate the sensitivity of dynamic response of extended structures to spatial variable ground motions (SVGM). All factors of spatial variability of ground motion are considered, especially local site effect. In this paper, a method is presented to simulate spatially varying earthquake ground motions. The scheme for generating spatially varying ground motions is established for spatial locations on the ground surface with varying site conditions. In this proposed method, two steps are necessary. Firstly, the base rock motions are assumed to have the same intensity and are modelled with a filtered Tajimi-Kanai power spectral density function. An empirical coherency loss model is used to define spatial variable seismic ground motions at the base rock. In the second step, power spectral density function of ground motion on surface is derived by considering site amplification effect based on the one dimensional seismic wave propagation theory. Several dynamics analysis of a curved viaduct to various cases of spatially varying seismic ground motions are performed. For comparison, responses to uniform ground motion, to spatial ground motions without considering local site effect, to spatial ground motions with considering coherency loss, phase delay and local site effects are also calculated. The results showed that the generated seismic signals are strongly conditioned by the local site effect. In the same sense, the dynamic response of the viaduct is very sensitive of the variation of local geological conditions of the site. The effect of neglecting local site effect in dynamic analysis gives rise to a significant underestimation of the seismic demand of the structure.

Impact of time and frequency domain ground motion modification on the response of a SDOF system

  • Carlson, Clinton P.;Zekkos, Dimitrios;McCormick, Jason P.
    • Earthquakes and Structures
    • /
    • 제7권6호
    • /
    • pp.1283-1301
    • /
    • 2014
  • Ground motion modification is extensively used in seismic design of civil infrastructure, especially where few or no recorded ground motions representative of the design scenario are available. A site in Los Angeles, California is used as a study site and 28 ground motions consistent with the design earthquake scenario are selected. The suite of 28 ground motions is scaled and modified in the time domain (TD) and frequency domain (FD) before being used as input to a bilinear SDOF system. The median structural responses to the suites of scaled, TD-modified, and FD-modified motions, along with ratios of he modified-to-scaled responses, are investigated for SDOF systems with different periods, strength ratios, and post-yield stiffness ratios. Overall, little difference (less than 20%) is observed in the peak structural accelerations, velocities, and displacements; displacement ductility; and absolute accelerations caused by the TD-modified and FD-modified motions when compared to the responses caused by the scaled motions. The energy absorbed by the system when the modified motions are used as input is more than 20% greater than when scaled motions are used as input. The observed trends in the structural response are predominantly the result of changes in the ground motion characteristics caused by modification.

Seismic response of nuclear containment structures due to recorded and simulated near-fault ground motions

  • Kurtulus Soyluk;Hamid Sadegh-Azar;Dersu Yilmaz
    • Structural Engineering and Mechanics
    • /
    • 제87권5호
    • /
    • pp.431-450
    • /
    • 2023
  • In this study, it is intended to perform nonlinear time-history analyses of nuclear power plant structures (NPP) under near-fault earthquakes showing directivity pulse and fling-step characteristics. Simulation procedures based on cycloidal pulse and far-fault ground motions are also used to simulate near-fault motions showing forward-directivity and fling-step characteristics and the structural responses are compared with those of the recorded near-fault ground motions. Because it is aimed to determine specifically the pulse type characteristics of near-fault ground motions on NPPs, all the ground motions are normalized to have a PGA of 0.3 g. Depending on the obtained results it can be underlined that although near-fault ground motion has the potential to cause damage mostly on structural systems having larger periods, it may also have noticeable effects on the responses of rigid structures, like NPP containment buildings. On the other hand, simulated near-fault motions can help us to get an insight into the near-fault mechanism as well as an approximate visualization of the structural responses under near-fault earthquakes.

목표스펙트럼에 근사한 평균응답스펙트럼을 갖는 지반운동집단의 효율적인 선정방법 (Efficient Method for Selecting Ground Motions with a Mean Response Spectrum Matching a Target Spectrum)

  • 한상환;석승욱
    • 한국지진공학회논문집
    • /
    • 제15권5호
    • /
    • pp.1-10
    • /
    • 2011
  • 본 연구에서는 지반운동 라이브러리에서 목표스펙트럼에 근사한 평균응답스펙트럼을 갖는 한 개 혹은 다수의 지반운동을 선정하는 효율적인 방법을 제안하고자 한다. 지반운동 선정 시 목표스펙트럼의 형상과 크기를 맞추어야 하는데 이 두 가지를 독립적으로 고려할 수 있다는 기존 연구결과에 따라 본 연구에서도 형상이 가장 유사한 지반운동을 찾고 크기를 맞추기 위하여 배율조정계수를 사용한다. 형상을 맞추기 위해 각 주기에서 목표스펙트럼과 지반운동 평균응답스펙트럼의 차이 값의 표준편차가 최소가 되도록 하여 선정하는 방법을 제안하였다. 형상이 결정된 후 그 크기를 맞추기 위해 본 연구에서 제안한 배율조정계수를 찾는 방법은 기존 연구와 달리 한번에 찾을 수 있도록 제안하였다. 40개의 지반운동 라이브러리로부터 제안한 방법을 이용하여 목표스펙트럼에 근사한 평균스펙트럼을 갖는 7개의 지반운동기록을 선정한 결과, 그 정확성과 계산소요시간에 있어 모두 만족할만한 결과를 보였다.

입력지진파 차이로 인한 지반응답 분산도 평가 연구 (Evaluation of Ground Response Dispersion Caused by the Difference of Input Ground Motions)

  • 김진만;류정호;권기철;심재호;김제경
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2007년 가을학술발표회
    • /
    • pp.293-304
    • /
    • 2007
  • In 2007, Round Robin Test (RRT) on ground response analyses has been conducted by the technical committee of Soil Dynamics and Geotechnical Earthquake Engineering of Korean Geotechnical Society. Total 14 teams have reported 16 different results. This paper discusses the evaluation of ground response dispersion caused by the difference of input ground motions. In order to determine the characteristics of ground response, this study analysed the peak ground acceleration, predominant period, and response spectrum of reported ground surface motions. The results suggest that ground response dispersion due to the difference of input ground motions can be significant.

  • PDF

층상구조에서 지진파 전파경로를 고려하여 수정된 경험 Green 함수를 이용한 지반운동 모사 (Site-Specific Ground Motions based on Empirical Green`s Function modified for the Path Effects in Layered Media)

  • 조남대;박창업
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2001
    • /
    • pp.19-27
    • /
    • 2001
  • Seismic parameters fur computation of ground motions in Southern Korea are obtained from recently recorded data, and site-independent regional and site-dependent local strong ground motions are predicted using efficient computational techniques. For the computation of ground motions, we devised an efficient procedure to compute site-independent $x_{q}$ and dependent $x_{s}$ values separately. The first step of this procedure is to use the coda normalization method far computation of site independent Q or corresponding $x_{q}$ value. The next step is the computation of $x_{s}$, values fur each site separately using the given $x_{q}$ value. For computation of ground motions the empirical Green's function (EGF) is modified to account fur the depth and distance variations of subevents on a finite fault plane using the theoritical Green's function. It is computed using wavenumber integration technique in layered media. The site dependent ground motions at seismic stations in southeastern local area were properly simulated using the modified empirical Green's function method in layered medium. The proposed method and procedures fur estimation of site dependent seismic parameters and ground motions could be efficiently used in the low and moderate seismicity regions.ons.s.ons.

  • PDF

연약지반에 건설된 단일형 현장타설말뚝 교량의 근단층지반운동에 대한 내진성능 (Seismic Performance of Bridge with Pile Bent Structures in Soft Ground against Near-Fault Ground Motions)

  • 선창호;안성민;김정한;김익현
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제23권7호
    • /
    • pp.137-144
    • /
    • 2019
  • 근단층 지역에 위치한 교량은 근단층지반운동에 대한 내진안전성을 확보하는 것이 중요하다. 본 연구에서는 연약지반이 두껍고 다양한 지층으로 구성된 지역에 건설되는 단일형 현장타설말뚝 교량의 지진거동특성과 내진안전성을 분석하였다. 근단층지반운동을 생성하고 지반해석을 수행하여 각 지층에서의 지반가속도이력을 산정하였다. 이 가속도이력을 이용하여 각 지층의 지반을 등가스프링으로 모델화하고, 각 지층에서의 가속도시간이력을 입력지반운동으로 하는 다지점 가진 지진해석을 수행하였다. 근단층지반운동의 특성으로 인하여 교량은 탄성영역 내에서 거동하였지만 최대모멘트의 발생 위치 등이 설계지반운동을 고려할 때와는 상이한 특성을 보였다.

유사 강지진동을 이용한 지반응답의 Amplication Factor 스펙트럼 분석 (Analysis of Amplication Factor of Response Spectrum using Strong Ground Motions Compatible to the Domestic Seismotectonic Characteristics)

  • 김준경
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1997년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Fall 1997
    • /
    • pp.88-93
    • /
    • 1997
  • Amplication factor spectrum has been obtained and compared with standard Response Spectrum using the observed strong ground motions database. The observed ground motions from the Miramichi, Nahanni, Saguenay and New Madrid Earthquake (vertical component 19. horizontal component 36). which are estimated to represent domestic seismotectonic characteristics such as seismic source, attenuation, and site effect, are used for the analysis of amplication factor spectrum. Amplication factor has been calculated using both observed peak values and results from responses to the observed horizontal and vertical ground motions. The comparison shows that the amplication factors resultant from this study exceeds those of Standard Response Spectrum at relatively higher frequencies. The results implie that the characteristics of the seismic strong ground motion which may represent the domestic seismotectonic characteristics differs from those of Standard Response Spectrum, which are resultant from the strong ground motions observed mainly at the westem United States.

  • PDF

영월 및 경주지진 파형의 주파수 분석 (Characteristics of Spectrum using Observed Ground Motions from the Yongwol and the KyoungJu Earthquakes)

  • 김준경
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1998년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Spring 1998
    • /
    • pp.407-412
    • /
    • 1998
  • Amplification factor spectrum, using the observed strong ground motions database, has been obtained and compared with Standard Response Spectrum, which were suggested by US NRC. The observed ground motions from the Yongwol and the Kyoungju Earthquake, respectively, which are suppose to represent domestic seismotectonic characteristics such as seismic source, attenuation, and site effect, are used for the analysis of amplification factor spectrum. Amplification factors have been calculated by comparing the observed peak ground motions with results from responses to the observed horizontal and vertical ground motions. The comparison shows that the amplification factors resultant from this study exceeds those of Standard Response Spectum at relatively higher frequencies. The results suggest that the characteristics of the seismic strong ground motion, which are supposed to represent the domestic seismotectonic characteristics, differs from those of Standard Response Spectrum, especially at hither frequencies

  • PDF