• Title/Summary/Keyword: ground model test

Search Result 1,135, Processing Time 0.027 seconds

A Study of Aircraft Ground Motion (항공기 지상운동 특성에 관한 연구)

  • Song, Won Jong
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.6
    • /
    • pp.17-25
    • /
    • 2017
  • Vertical reaction force between ground and tire is an important parameter determining the ground behavior characteristics of aircraft. This parameter can be used to calculate the lateral force and friction. However, it is hard to obtain this parameter in real-time when the aircraft is taxiing. Therefore, pre-analysis of ground behavior and vertical reaction force should be conducted using ground simulation results to prevent rollover or hazardous scenarios. In this paper, a Landing Gear and Full-Aircraft model was constructed using VI-Aircraft S/W. The roll behavior of aircraft was analyzed using steering simulation results compared with taxi-test data.

Numerical Modeling of Sloping Ground under Earthquake Loading Using UBCSAND Model (UBCSAND모델을 이용한 사면의 동적거동해석)

  • Park Sung-Sik;Kim Young-Su;Kim Hee-Joong
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.4
    • /
    • pp.61-71
    • /
    • 2006
  • A numerical procedure is presented fur evaluating seismic liquefaction on sloping ground sites. The procedure uses a fully coupled dynamic effective stress analysis with a plastic constitutive model called UBCSAND. The model was first calibrated against laboratory element behavior. This involved cyclic simple shear tests performed on loose sand with and without initial static shear stress. The numerical procedure is then verified by predicting a centrifuge test with a slope performed on loose Fraser River sand. The predicted excess pore pressures, accelerations and displacements are compared with the measurements. The results are shown to be in good agreement. The shear stress reversal patterns depend on static and cyclic shear stress levels and are shown to play a key role in evaluating liquefaction response in sloping ground sites. The sand near the slope has low effective confining stress and dilates more. When no stress reversals occur, the sand behaves in a stiffer manner that curtails the accumulated downslope displacements. The numerical procedure using UBCSAND can serve as a guide for design of new soil structures or retrofit of existing ones.

The Fault Analysis Model for Air-to-Ground Weapon Delivery using Testing-Based Software Fault Localization (소프트웨어 오류 추정 기법을 활용한 공대지 사격 오류 요인 분석 모델)

  • Kim, Jae-Hwan;Choi, Kyung-Hee;Chung, Ki-Hyun
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.3
    • /
    • pp.59-67
    • /
    • 2011
  • This paper proposes a model to analyze the fault factors of air-to-ground weapon delivery utilizing software fault localization methods. In the previous study, to figure out the factors to affect the accuracy of air-to-ground weapon delivery, the FBEL (Factor-based Error Localization) method had been proposed and the fault factors were analyzed based on the method. But in the study, the correlation between weapon delivery accuracy and the fault factors could not be revealed because the firing accuracy among several factors was fixed. In this paper we propose a more precise fault analysis model driven through a study of the correlation among the fault factors of weapon delivery, and a method to estimate the possibility of faults with the limited number of test cases utilizing the model. The effectiveness of proposed method is verified through the simulation utilizing real delivery data. and weapons delivery testing in the evaluation of which element affecting the accuracy of analysis that was available to be used successfully.

Fault Management Design Verification Test for Electrical Power Subsystem and Attitude and Orbit Control Subsystem of Low Earth Orbit Satellite (저궤도위성의 전력계 및 자세제어계 고장 관리 설계 검증시험)

  • Lee, Sang-Rok;Jeon, Hyeon-Jin;Jeon, Moon-Jin;Lim, Seong-Bin
    • Aerospace Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.14-23
    • /
    • 2013
  • Fault management design of the satellite describes preparations for failures which can occur during operational phase. Fault management design contains detection and isolation function of anomaly, and also it contains function to maintain the satellite in safe condition until the ground station finds out a cause of failure and takes a countermeasure. Unlike normal operation, safing operation is automatically performed by Power Control and Distribution Unit and Integrated Bus Management Unit which loads Flight Software without intervention of ground station. Since fault management operation is automatical, fault management logic and functionality of relevant hardware should be thoroughly checked during ground test phase, and error which is similar to actual should be carefully applied without damage. Verification test for fault management design is conducted for various subsystems of satellite. In this paper, we show the design process of fault management design verification test for Electrical Power Subsystem and Attitude and Orbit Control Subsystem of Low Earth Orbit satellite flight model and the test results.

Evaluation of Suction Installation for the Circular Pipe into Low-water Sandy Ground via Model Test (모형실험을 활용한 저수심 사질토 지반에서 원형강관 설치 석션압 평가)

  • Xin, Zhen-Hua;Kim, Jae-Hyun;Lee, Ju-Hyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.1-10
    • /
    • 2021
  • In this study, a circular pipe can be installed by suction pressure for construction on soft ground with a low-water level. A series of laboratory-scale model tests were conducted in sandy ground to comprehend the suction pressure of the circular pipe in low-water levels. For repeated tests on saturated sandy soil, a container was mounted with three vibration generators on the floor. A repetitive vibration was applied using the vibration system for ground compaction. In the model tests, different diameters and thicknesses on saturated sandy soil with a water depth were considered. The result showed that the suction pressure increased with increasing penetration depth of the circular pipe. Moreover, the suction pressure required to penetrate the pipe decreased with increasing diameter. In the low-water level, the total suction pressure measured at the top lid increased because additional suction pressure is required to lift the water column. On the other hand, this led to a decrease in suction pressure to penetrate the circular pipe because the weight of the water column is applied as a dead load. Therefore, it is necessary to consider the water level to design the required suction pressure accurately.

Analytical Model for Post Tension Flat Plate Frames (포스트 텐션 플랫 플레이트 골조의 해석모델)

  • Han, Sang-Whan;Ryu, Jong-Hyuk
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.6
    • /
    • pp.23-32
    • /
    • 2007
  • This study developed an analytical model for predicting nonlinear behavior of PT flat plate frames having slab-column connections with and without slab bottom reinforcement passing through the column. The developed model can predict the failure sequence until punching failure occurs. For verifying the analytical model, the test results of PT flat plate slab-column connections were compared with the results of the analysis. Moreover, the results of static pushover test and shaking table test of 2 story PT flat plate frame were compared with analysis results. For evaluating seismic performance of PT flat plate frame, this study conducted nonlinear response history analysis of the 2 story PT flat plate frame with and without slab bottom reinforcement passing through the column under 1940 El Centro ground motion scaled to have pseudo spectral acceleration of 0.3, 0.5, and 0.7g at the fundamental period of the frame. This study observed that as ground motion is more intense, seismic demands for the frame having the connections without slab bottom reinforcement passing through the column are larger than those without slab bottom reinforcement.

Effects of Slope Location on the Boundary Condition in the 1g Shaking Table Test (1g 진동대시험에서 사면의 위치에 따른 경계조건 영향평가)

  • Jeong, Sugeun;Jin, Yong;Kim, Daeheyon
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.535-545
    • /
    • 2022
  • Improving the stability of the ground in seismic design requires an understanding of the dynamic behavior of the ground under seismic loads. The shaking table test is an important methodology to provide this understanding. This study aimed to assess the influence on boundary conditions, as they are among the most important factors affecting the test. This was achieved by testing the influence of boundary conditions on the seismic responses of model slopes at different locations in the testing apparatus. A model slope was fabricated at different locations in a laminar shear box, and the influence of the boundary conditions was then measured. Each model slope was created at 100, 50, and 25 cm from the soil wall, and sine wave seismic loads of the same size were inputted. The results confirmed that the acceleration was amplified by the influence of the boundary in the case of the slope being located 25 cm from the boundary, whereas the influence of the boundary conditions decreased when the slope was located at 50~100 cm.

Monitoring of tension force and load transfer of ground anchor by using optical FBG sensors embedded tendon

  • Kim, Young-Sang;Sung, Hyun-Jong;Kim, Hyun-Woo;Kim, Jae-Min
    • Smart Structures and Systems
    • /
    • v.7 no.4
    • /
    • pp.303-317
    • /
    • 2011
  • A specially designed tendon, which is proposed by embedding an FBG sensor into the center king cable of a 7-wire strand tendon, was applied to monitor the prestress force and load transfer of ground anchor. A series of tensile tests and a model pullout test were performed to verify the feasibility of the proposed smart tendon as a measuring sensor of tension force and load transfer along the tendon. The smart tendon has proven to be very effective for monitoring prestress force and load transfer by measuring the strain change of the tendon at the free part and the fixed part of ground anchor, respectively. Two 11.5 m long proto-type ground anchors were made simply by replacing a tendon with the proposed smart tendon and prestress forces of each anchor were monitored during the loading-unloading step using both FBG sensor embedded in the smart tendon and the conventional load cell. By comparing the prestress forces measured by the smart tendon and load cell, it was found that the prestress force monitored from the FBG sensor located at the free part is comparable to that measured from the conventional load cell. Furthermore, the load transfer of prestressing force at the tendon-grout interface was clearly measured from the FBGs distributed along the fixed part. From these pullout tests, the proposed smart tendon is not only expected to be an alternative monitoring tool for measuring prestress force from the introducing stage to the long-term period for health monitoring of the ground anchor but also can be used to improve design practice through determining the economic fixed length by practically measuring the load transfer depth.

Behaviour Characteristic of Grid Dome Shaped Space Structures by Post-tensioning (포스트텐션에 의한 격자 돔형 공간 구조의 거동 특성)

  • 김진우
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.1
    • /
    • pp.41-45
    • /
    • 2002
  • This paper is concerned with the erection and ultimate load test of dome shaped space structures by post-tensioning. It is a fast and economical method for constructing such a dome by post-tensioning of the cable in bottom chords. This structure consists of uniform pyramids in a flat layouts on the ground, and then the structure is shaped and erected into its final curved space structure. Ultimate load test was performed for dome shaped space structures. The feasibility of the proposed erection method and the reliability of the established geometric model were confirmed with numerical analysis and experimental investigation on a small scale steel model. As a results we can find the most reasonable modeling technique for the prediction of shape formation in practices and we can know the characteristic of the behaviour in ultimate load test for practical design purposes.

Load Transfer Characteristics of Pile Foundation for Lightweight Pavement in Sand Soil using Laboratory Chamber Test (모형챔버시험을 이용한 사질토 지반의 경량포장체용 기초의 하중전달 특성)

  • Shin, Kwang-Ho;Hwang, Cheol-Bi;Jeon, Sang-Ryeol;Lee, Kwan-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4588-4594
    • /
    • 2014
  • In this study, small scaled (1/30) laboratory chamber tests of the pile foundation for a lightweight concrete pavement system were carried out to evaluate the safety of a pile foundation on sandy soil. The testing ground was simulated in the field and a standard pile-loading test was conducted. The test piles were divided into 3 types, Cases A, B and C, which is the location from the center of the slab by applying a vertical load. The interval between the piles was set to 8 cm. As a result of the pile foundation model test, the pavement settled when the vertical load was increased to 12kg from 1.5kg in sandy soil ground, particularly the maximum settlement of 0.04mm. Judging from the model chamber test, Case A showed compressive deformation, whereas Case B represented the compression and tensile forces with increasing vertical load. Case C showed an increase in tensile strain.