• 제목/요약/키워드: ground loads

Search Result 501, Processing Time 0.021 seconds

Optimum Design For a Highly Integrated Tall Building System (초고밀도 고층복합빌딩시스템의 최적설계)

  • Cho, Taejun;Kim, Tae-Soo
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.1
    • /
    • pp.14-20
    • /
    • 2015
  • In this study, we propose an innovative lateral force distribution building system between tall buildings by utilizing the difference of moment of inertia, as the alternative design for highly integrated city area. Considering a tri-axial symmetric conditions and boundary conditions for the three-dimensional building structure system, a two-dimensional model is composed. In the proposed indeterminate structural model, important design variables are determined for obtaining minimum horizontal deflections, reactions and bending moments at the ground level of the buildings. Regarding a case of the provided two spatial structures connected to 4 buildings, the optimum location of middle located spatial structure is 45% from the top of the building, which minimize the end moments at the bottom of the buildings. In the considered verification examples, reduced drifts at the top location of the building systems are validated against static wind pressure loads and static earthquake loads. The suggested hybrid building system will improve the safety and reliability of the system due to the added internal truss-dome structures in terms of more than 30% reduced drift and vibration through the development of convergence of tall buildings and spatial structures.

Dymamic Behavior of Large Concrete Panel Structures Subjected Seismic Loads (지진하중을 받는 대형 콘크리트 판구조의 동적거동-3층 입체구조의 진동실험결과를 중심으로)

  • 서수연;박병순;백용준;이원호;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.04a
    • /
    • pp.148-153
    • /
    • 1993
  • The paper presents the results of shaking table test conducted on the 1/3.3 scaled large concrete panel model. The behaviors of large concrete panel structures subjected to seismic excitations are controlled by capacity of horizontal and vertical joints. To Study the seismic capacity of the large concrete panel structures, experimental researches for joints and structural assemblage are needed. Especially, since the magnitude of seismic loads are depended on the variation of time, period and accelerations, dynamic test is needed for estimating the seismic resistance of large concrete panel structures. The objective of this paper is to study the behaviors of large concrete panel structures on seismic excitations and to estimate the safety. Test results are as follows : 1) Test model was critically damaged in the first floor horizontal joint by rocking. 2) Elastic limit(0.12kg) of test model was 5times higher than that of korean seismic design code. 3) Maxium base shear of test model at the ground acceleration of 0.12g was 3.5 times higher than the result of equivalent static analysis. 4) Damping ratio of test model turned out 3.9~5.3% and the period at 0.12g was 0.065sec.

  • PDF

A Study on the Structural Safety of the Roof Improvement Project (슬레이트지붕 개량사업 구조안전성 검토)

  • Kang, Kyung-Soo
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.20 no.1
    • /
    • pp.19-26
    • /
    • 2018
  • The roof improvement project is being carried out under the government's leadership for the sake of national welfare. The project is to replace the asbestos slate roof with a metallic one. In this study, the structural safety of the improved roof was examined and the project guidelines were reviewed. The causes of the roof damage were investigated and the structural analysis was performed for the roof frame subject to wind and snow loads. Metallic roof assemblies have higher strength and load resistance capability than usual slate ones, so the structural safety is governed by the frame. The stresses of the roof frame elements caused by the wind and snow loads were analyzed according to roof frame with various spacings between the rafters and the purlins. Wind load analysis was performed by 24, 28, and 38 m/sec of the basic wind speed. Snow load analysis was carried out by 0.5, 1.0 and $2.0kN/m^2$ of the ground snow load. As the analysis result, the current spacing and the size of the lumber did not satisfy the Korean building code specification. To secure the safety of the roof improvement project, the spacing of the roof frame elements and the size of the lumber should be determined based on the analysis results by structural engineers.

A Study of Variation of Wave-induced Stresses in a Seabed (파랑하중에 의한 해저지반의 응력변화에 대한 연구)

  • 장병욱;박영권;우철웅
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.1
    • /
    • pp.79-89
    • /
    • 1996
  • It is expected that the soil hehaviours in the seahed subjected to cyclic wave loads are much different from that on the ground Cyclic shear stresses developed below the ocean bed as a result of a passing wave train may progressively build up pore pressure in certain soils. Such build-up pore pressure may be developed dynamic behaviour such as liquefaction and significant deformation of the seabed. Currently available analytical and testing methods for the seabed subjected to cyclic wave loads are not general. The purpose of the study are to provide a test method in laboratory and to analyse the mechanism of wave-induced stresses and liquefactions potentials of the unsaturated silty marine sand. It is showed that the test set-up made especially for this study delivers exactly oscillatory wave pressures of the form of sine function. Laboratory test results defining the cyclic shear strength of the unsaturated porous medium that is homogenously sedimented. It is understood that the pore water pressure due to induced-waves is not accumulated as the wave number increases but reveals periodical change on the still water surface. The magnitude of the pore water pressure tends to be attenuated radically with a certain time lag under the action of both high and low waves as depth increases.

  • PDF

Effect of Earthquake characteristics on seismic progressive collapse potential in steel moment resisting frame

  • Tavakoli, Hamid R.;Hasani, Amir H.
    • Earthquakes and Structures
    • /
    • v.12 no.5
    • /
    • pp.529-541
    • /
    • 2017
  • According to the definition, progressive collapse could occur due to the initial partial failure of the structural members which by spreading to the adjacent members, could result in partial or overall collapse of the structure. Up to now, most researchers have investigated the progressive collapse due to explosion, fire or impact loads. But new research has shown that the seismic load could also be a factor for initiation of the progressive collapse. In this research, the progressive collapse capacity for the 5 and 15-story steel special moment resisting frames using push-down nonlinear static analysis, and nonlinear dynamic analysis under the gravity loads specified in the GSA Guidelines, were studied. After identifying the critical members, in order to investigate the seismic progressive collapse, the 5-story steel special moment resisting frame was analyzed by the nonlinear time history analysis under the effect of earthquakes with different characteristics. In order to account for the initial damage, one of the critical columns was weakened at the initiation of the earthquake or its Peak Ground Acceleration (PGA). The results of progressive collapse analyses showed that the potential of progressive collapse is considerably dependent upon location of the removed column and the number of stories, also the results of seismic progressive collapse showed that the dynamic response of column removal under the seismic load is completely dependent on earthquake characteristics like Arias intensity, PGA and earthquake frequency contents.

Study for improvement of grounds subjected to cyclic loads

  • Mittal, Satyendra;Meyase, Kenisevi
    • Geomechanics and Engineering
    • /
    • v.4 no.3
    • /
    • pp.191-208
    • /
    • 2012
  • Due to rapid industrialisation, large scale infrastructure development is taking place worldwide. This includes railways, high speed highways, elevated roads etc. To meet the demands of society and industry, many innovative techniques and materials are being developed. In developed nations like USA, Japan etc. for railways applications, new material like geocells, geogrids are being used successfully to enable fast movement of vehicles. The present research work was aimed to develop design methodologies for improvement of grounds subjected to cyclic loads caused by moving vehicles on roads, rail tracks etc. Deformation behavior of ballast under static and cyclic load tests was studied based on square footing test. The paper presents a study of the effect of geo-synthetic reinforcement on the (cumulative) plastic settlement, of point loaded square footing on a thick layer of granular base overlying different compressible bases. The research findings showed that inclusion of geo-synthetics significantly improves the performance of ballasted tracks and reduces the foundation area. If the area is kept same, higher speed trains can be allowed to pass through the same track with insertion of geosynthetics. Similarly, area of machine foundation may also be reduced where geosynthetics is provided in foundation. The model tests results have been validated by numerical modeling, using $FLAC^{3D}$.

Pile Load test on a Large Barrette Pile and a Bored Pile for the Identification of the Load Transfer Characteristics (대형 바렛말뚝과 현장타설말뚝의 하중전이특성 파악을 위한 재하시험)

  • Han Sung-Gil;Park Jong-Kwan
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.4 s.35
    • /
    • pp.493-498
    • /
    • 2006
  • In this study, two large pile load tests were performed in the deep sand gravel deposit of Nakdong river basin so that the characteristics of the load transfer was identified. The fully instrumented rectangular barrette pile in the size of $1.5\times3.0m$ and the circular bored pile of the diameter 1.5 m were placed into the ground below 50 m. Under the applied loads of 2,400 tonf and 4,000 tonf, the test results of the load transfer showed the portion of 83% and 93% of the applied loads on the barrette pile and the bored pile, respectively, were supported by the skin friction along the pile shaft. It was revealed that the most of these skin friction mobilized in sand layer underlying clay layer having N-value more than 30 and that the friction per unit area of the bored pile was larger than the friction of barrette pile. However, if embedded in the stiff sand graval layer, the both piles were proven to be sufficient for using as the friction piles.

Pullout Characteristics of Multi Helical Anchors in Clay (점성토 지반에서의 다중 헬리컬 앵커의 인발 특성)

  • 이준대;이봉직;이종규
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.4
    • /
    • pp.114-121
    • /
    • 1997
  • Helical anchors are foundation structure that designed to resist uplift loads are installed by applying in load to shaft while rotating it into the ground. These can be a cost effective means of proving tension anchorage for foundation where soil conditions permit their installation because of ease of installation. At present time, tapered helical anchors are commonly used to carry uplift loads. The uplift capacity includes the following factors : the height of overburden above the top helix, the resistant along a cylinder, the weight of the soil in the cylinder and suction force. In order to make clear behavior characteristics of helical anchors with pullout, model tests were conducted with respect to various embedment depth, space of helix, shape of helix. Based on the experimental study, the following conclusions are drawn. 1) The uplift capacity of multi helical anchors increase with embedment ratio of anchors The increase is smooth after critical uplift capacity. 2) Critical breakout factors and critical embedment ratio of multi helical anchor exist 7∼8, 4∼6 respectively. 3) Variation of uplift capacity with helix spaces show down after S/D=5. 4) Critical breakout factors of helical anchor in the laboratory test are similar to Das's theory.

  • PDF

Evaluation of wind loads and the potential of Turkey's south west region by using log-normal and gamma distributions

  • Ozkan, Ramazan;Sen, Faruk;Balli, Serkan
    • Wind and Structures
    • /
    • v.31 no.4
    • /
    • pp.299-309
    • /
    • 2020
  • In this study, wind data such as speeds, loads and potential of Muğla which is located in the southwest of Turkey were statistically analyzed. The wind data which consists of hourly wind speed between 2010 and 2013 years, was measured at the 10-meters height in four different ground stations (Datça, Fethiye, Marmaris, Köyceğiz). These stations are operated by The Turkish State Meteorological Service (T.S.M.S). Furthermore, wind data was analyzed by using Log-Normal and Gamma distributions, since these distributions fit better than Weibull, Normal, Exponential and Logistic distributions. Root Mean Squared Error (RMSE) and the coefficients of the goodness of fit (R2) were also determined by using statistical analysis. According to the results, extreme wind speed in the research area was 33 m/s at the Datça station. The effective wind load at this speed is 0.68 kN/㎡. The highest mean power densities for Datça, Fethiye, Marmaris and Köyceğiz were found to be 46.2, 1.6, 6.5 and 2.2 W/㎡, respectively. Also, although Log-normal distribution exhibited a good performance i.e., lower AD (Anderson - Darling statistic (AD) values) values, Gamma distribution was found more suitable in the estimation of wind speed and power of the region.

Development of a Temporary Pole Supporting System to Protect the Plastic Greenhouses from Heavy Snow Damage (플라스틱 온실의 폭설피해 방지를 위한 가지주 장치 개발)

  • Nam, Sang-Woon
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.4
    • /
    • pp.107-113
    • /
    • 2002
  • The pipe framed and arch shape plastic greenhouse, which is the most popular greenhouse in Korea, is relatively weak in snowdrift. Reinforcement of rigid frame or column is required to reduce the damage from heavy snow in this type. But additional rigid frames or columns decrease light transmissivity or workability, and increase construction cost. So it is desirable to prepare some temporary poles and to install them when the warning of heavy snow is announced. This study was carried out to develop the temporary pole supporting system using galvanized steel pipes for plastic housing and to evaluate the safe snow load on a temporary pole. A pipe connector, which is inserted in the top of pipe used in the temporary pole and supports the center purline, was designed and manufactured to be able to carry the upper loads safely. And a bearing plate was safely designed and manufactured in order to carry the loads acting on it to the ground. When temporary poles of ${\phi}$ 25 pipe are installed at 2.4m interval, it shows that the single span plastic greenhouses with 5~7 m width are able to support the additional snow depth of 13.9~25.3 cm beyond the snow load supported by main frame.