• Title/Summary/Keyword: ground loads

Search Result 494, Processing Time 0.026 seconds

Ultimate Load and Load Distribution of Ground Anchor in Waste Landfill (쓰레기 매립층에서 그라운드 앵커의 극한하중 및 하중분포)

  • Kim, Sung-Kyu;Cho, Kyu-Wan;Kim, Woong-Kyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1434-1441
    • /
    • 2005
  • For anchored system applications, each ground anchor is tested after installation and prior to being put into service to loads that exceed the design. This load testing methodology, combined with specific acceptance criteria, is used to verify that the ground anchor can carry the design load without excessive deformations and that the assumed load transfer mechanisms have been properly developed behind the assumed critical failure surface. After acceptance, the ground anchor is stressed to a specified load and the load is locked-off. The two types of load tests conducted during the research program included performance test and creep test which were carried out in accordance with testing procedures by AASHTO(AASHTO 1990) and FHWA(Weatherby 1998) at Samsung-Dong 00 Site. Form the measurements, ultimate load and creep rate of anchors are proposed for straight shaft pressured grouted anchors in waste landfill. The load distribution on the grout was obtained from the measured strain data at each fraction of the ultimate load during the load tests.

  • PDF

Feasibility Study on a Damage Assessment of Underground Structures by Ground Shock Using the Fast Running Model (지중파에 의한 지하 구조물의 부재피해평가를 위한 고속해석모델 적용 가능성 연구)

  • Sung, Seung-Hun;Chong, Jin-Wung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.279-287
    • /
    • 2018
  • This study investigated applicability of the fast running model for damage assessment of underground structures by ground shock. For this reason, the fast running model that consists of two main models such as the ground shock generation and propagation model and the underground structural damage assessment model was developed. The ground shock generation and propagation model was programed using theoretical formula and empirical formula introduced in TM5-855-1(US army manual). The single degree of freedom model of structural components was utilized to predict structural dynamic displacements which are used as index to assess damage level of components. In order to confirm the feasibility of the developed fast running model, underground structural dynamic displacements estimated from the fast running model were compared to displacements obtained from the finite element analysis.

Track System Interactions Between the Track Link and the Ground (궤도시스템의 궤도링크와 연약지반과의 상호 접촉연구)

  • Ryu, Han-Sik;Jang, Jung-Sun;Choi, Jin-Hwan;Bae, Dae-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.11
    • /
    • pp.1711-1718
    • /
    • 2004
  • When the tracked vehicle is running on various types of terrain, the physical properties of the interacting ground can be different. In this paper, the interactions between track link and soft soil ground are investigated using static sinkage theory of soil ground. Grouser surfaces of a track link and triangular patches of ground are implemented for contact detection algorithm. Contact force at each segment area of a track link is computed respectively by using virtual work concept. Bekker's static soil sinkage model is applied for pressure-sinkage relationship and shear stress-shear displacement relationship proposed by Janosi and Hanamoto is used for tangential shear forces. The repetitive normal loads of a terrain are considered because a terrain element is subject to the repetitive loading of the roadwheels of a tracked vehicle. The methods how to apply Bekker's soil theory for multibody track system are proposed in this investigation and demonstrated numerically by high mobility tracked vehicle.

Soil-structure interaction effects on collapse probability of the RC buildings subjected to far and near-field ground motions

  • Iman Hakamian;Kianoosh Taghikhani;Navid Manouchehri;Mohammad Mahdi Memarpour
    • Earthquakes and Structures
    • /
    • v.25 no.2
    • /
    • pp.99-112
    • /
    • 2023
  • This paper investigates the influences of Soil-Structure Interaction (SSI) on the seismic behavior of two-dimensional reinforced concrete moment-resisting frames subjected to Far-Field Ground Motion (FFGM) and Near-Field Ground Motion (NFGM). For this purpose, the nonlinear modeling of 7, 10, and 15-story reinforced concrete moment resisting frames were developed in Open Systems for Earthquake Engineering Simulation (OpenSees) software. Effects of SSI were studied by simulating Beam on Nonlinear Winkler Foundation (BNWF) and the soil type as homogenous medium-dense. Generally, the building resistance to seismic loads can be explained in terms of Incremental Dynamic Analysis (IDA); therefore, IDA curves are presented in this study. For comparison, the fragility evaluation is subjected to NFGM and FFGM as proposed by Quantification of Building Seismic Performance Factors (FEMA P-695). The seismic performance of Reinforced Concrete (RC) buildings with fixed and flexible foundations was evaluated to assess the probability of collapse. The results of this paper demonstrate that SSI and NFGM have significantly influenced the probability of failure of the RC frames. In particular, the flexible-base RC buildings experience higher Spectral acceleration (Sa) compared to the fixed-base ones subjected to FFGM and NFGM.

A Study on Concrete Lining Stress Changes Considering Load Supporting Capacity of Primary Supports of NATM Tunnel (NATM 터널에서 1차지보재의 지보압을 고려한 콘크리트라이닝 응력변화에 관한 연구)

  • Jeon, Sang Hyun;Shin, Young Wan;Yoo, Han Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4C
    • /
    • pp.147-154
    • /
    • 2011
  • Currently NATM tunnels are designed by applying the initial ground loads caused during construction to the primary supports, conisting of shotcrete, steel ribs and rock bolts. For long term considerations, it is assumed that the primary supports lose its functionality and therefore the secondary support, i.e. concrete lining, is design to resist against the entire ground loads. But the steel ribs, usually applied to bad ground conditions, are embedded in shotcrete causing very little corrosion and therefore the assumption that the primary support will lose all of its functionality is too conservative. Also even though shotcrete carbonates in long term, excluding it from design is also too conservative. In this study, we have, through analytical and numerical analysis, set a rational level of support pressure and allowable relaxed rock mass height sustainable by the primary support for long term design. Changes in sectional forces of the concrete lining considering the calculated support pressure of the primary supports was also carried out. Shallow subway tunnels were considered in the analysis with weathered rock and soft rock ground conditions. The analysis results showed that, by considering the support pressure of steel ribs, an economical design of the concrete lining is possible.

Experimental Study on the Structural Safety of the Tractor Front-End Loader Against Impact Load

  • Park, Young-Jun;Shim, Sung-Bo;Nam, Ju-Seok
    • Journal of Biosystems Engineering
    • /
    • v.41 no.3
    • /
    • pp.153-160
    • /
    • 2016
  • Purpose: This study was conducted to experimentally investigate the structural safety of and identify critical locations in a front-end loader under impact loads. Methods: Impact and static tests were conducted on a commonly used front-end loader mounted on a tractor. In the impact test, the bucket of the front-end loader with maximum live load was raised to its maximum lift height and was allowed to free fall to a height of 500 mm above the ground where it was stopped abruptly. For the static test, the bucket with maximum live load was raised and held at the maximum lift height, median height, and a height of 500 mm from the ground. Strain gages were attached at twenty-three main locations on the front-end loader, and the maximum stresses and strains were measured during respective impact and static tests. Results: Stresses and strains at the same location on the loader were higher in the impact test than in the static test, for most of measurement locations. This indicated that the front-end loader was put under a severe environment during impact loading. The safety factors for stresses were higher than 1.0 at all locations during impact and static tests. Conclusions: Since the lowest safety factor was higher than 1.0, the front-end loader was considered as structurally safe under impact loads. However, caution must be exercised at the locations having relatively low safety factors because failure may occur at these locations under high impact loads. These important design locations were identified to be the bucket link elements and the connection elements between the tractor frame and front-end loader. A robust design is required for these elements because of their high failure probability caused by excessive impact stress.

Small Scale Modelling Experiments for Evaluating Lateral Resistance of Block-Type Breakwater II: A Single Block Reinforced with Piles under Cyclic Lateral Loads (블록식 방파제의 수평저항력 평가를 위한 실내모형실험 II : 보강형 싱글블럭의 반복수평 하중에 대한 저항)

  • Kang, Gichun;Kim, Jiseong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.4
    • /
    • pp.105-112
    • /
    • 2021
  • In the case of harbor structures, it is important to understand the characteristics of structures that are subjected to repeated loads as they are structures that receive repetitive loads such as wave pressure as well as static loads. In this study, the lateral resistance according to the pile embeded depth of the block breakwater reinforced with piles by cyclic lateral loads was obtained through an model experiment. As the depth of embedment of the pile increased, the lateral resistance showed a tendency to increase. As the load was repeated, the gradient of the lateral resistance gradually appeared to be gentle. The bending moment of the rear pile was larger than that of the front pile. The bending moment of piles in the ground was similar to that when the pile head was free in the cohesionless of Broms (1964).

Analysis of NPS Pollution Loads over Rainfall-Runoff Events from the Silica Mine Site (규사광산 지역의 강우시 비점오염원의 유출분석)

  • Choi, Yong-hun;Won, Chul-hee;Seo, Ji-yeon;Shin, Min-Hwan;Yang, Hee-Jeong;Choi, Joong-dae
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.3
    • /
    • pp.413-419
    • /
    • 2010
  • A silica mine monitoring was conducted from March to December in 2008 to measure rainfall, runoff amounts and pollution loads. A total of 13 rainfall-runoff events were measured and analyzed with respect to runoff ratio, pollutant concentration and load, and initial flush. Over rainfall-runoff events, 95% confidence range of SS concentration was 942.5~2,056.2 mg/L. Other measured water quality indices also showed relatively large variation. This wide concentration variation was thought to be caused by the bare working ground of the mine that was used to store, process and transport the mined silica. Total pollution load of the 13 rainfall-runoff events was SS 17,901 kg/ha, $COD_{Cr}$ 160.9 kg/ha, $COD_{Mn}$ 111.24 kg/ha, BOD 79.6 kg/ha, T-N 13.8 kg/ha, T-P 3.5 kg/ha, and TOC 39.3 kg/ha. Initial flush was not well observed except SS. Very high SS concentration and load was occurred when rainfall was large. Therefore, it was recommended to manage the bare ground not to discharge excessive pollutants during wet days by covering the ground or constructing runoff treatment systems such as a sediment basin.

International Harmonized Economic Assessment Study of a Ground Source Heat Pump System (국제 호환형 지열히트펌프 시스템 경제성 평가 연구)

  • Na, Sun-Ik;Kang, Eun-Chul;Lee, Euy-Joon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.10 no.1
    • /
    • pp.7-13
    • /
    • 2014
  • This study intends to analyse the economical aspect of a GSHP(Ground Source Heat Pump) system compared to the conventional system which is consisted with a boiler and a chiller. This study has simulated four systems in Incheon. It developed and analyzed for applications in a residential and an office building which was based on the hourly EPI(Energy Performance Index, $kWh/m^2yr$). Case 1 is utilizing a boiler and a chiller to meet heating and cooling demand of a house. Case 2 is utilizing the same conventional set up as Case 1 of a office. Case 3 is summation of Case 1(house) and 2(office) systems and loads. And Case 4 is utilizing a GSHP to meet the combined loads of the house and office. The method of the economic assessment has been based on IEA ECBCS Annex 54 Subtask-C SPB(Simple Payback) method. The SPB calculated the economic balanced year of the alternative system over the reference system. The SPB of the alternative systems (GSHP) with 10%, 30% and 50% initial incentive has been calculated as 9.38, 6.72 and 4.06 year respectively while the SPB without initial incentive of systems was 10.71 year.

Biomechanical Analysisz of Varying Backpack Loads on the Lower Limb Moving during Downhill Walking (내림 경사로 보행시 배낭 무게에 따른 하지 움직임의 운동역학적 분석)

  • Chae, Woen-Sik;Lee, Haeng-Seob;Jung, Jae-Hu;Kim, Dong-Soo
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.2
    • /
    • pp.191-198
    • /
    • 2015
  • Objective : The purpose of this study was to conduct biomechanical analysis of varying backpack loads on the lower limb movements during downhill walking over $-20^{\circ}$ ramp. Method : Thirteen male university students (age: $23.5{\pm}2.1yrs$, height: $175.7{\pm}4.6cm$, weight: $651.9{\pm}55.5N$) who have no musculoskeletal disorder were recruited as the subjects. Each subject walked over $20^{\circ}$ ramp with four different backpack weights (0%, 10%, 20% and 30% of body weight) in random order at a speed of $1.0{\pm}0.1m/s$. Five digital camcorders and two force plates were used to obtain 3-d data and kinetics of the lower extremity. For each trial being analyzed, five critical instants were identified from the video recordings. Ground reaction force, loading rate, decay rate, and resultant joint moment of the ankle and the knee were determined by the inverse dynamics analysis. For each dependent variable, one-way ANOVA with repeated measures was used to determine whether there were significant differences among four different backpack weight conditions (p<.05). When a significant difference was found, post hoc analyses were performed using the contrast procedure. Results : The results of this study showed that the medio-lateral GRFs at RHC in 20% and 30% body weight were significantly greater than the corresponding value in 0% of body weight. A consistent increase in the vertical GRFs as backpack loads increased was observed. The valgus joint movement of the knee at RTO in 30% body weight was significantly greater than the corresponding values in 0% and 10% body weight. The increased valgus moment of 30% body weight observed in this phase was associated with decelerating and stabilizing effects on the knee joint. The results also showed that the extension and valgus joint moments of the knee were systematically affected by the backpack load during downhill walking. Conclusion : Since downhill walking while carrying heavy external loads in a backpack may lead to excessive knee joint moment, damage can occur to the joint structures such as joint capsule and ligaments. Therefore, excessive repetitions of downhill walking should be avoided if the lower extremity is subjected to abnormally high levels of load over an extended period of time.