• Title/Summary/Keyword: ground effect

Search Result 3,985, Processing Time 0.034 seconds

Experimental Study on the Small-Scale Rotor Hover Performance in Partial Ground Conditions (부분적 지면조건 하에서의 소형 로터 블레이드 제자리 비행 성능에 대한 실험적 연구)

  • Seo, Jin-Woo;Lee, Byoung-Eon;Kang, Beom-Soo;Oh, Se-Jong;Yee, Kwan-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.1
    • /
    • pp.12-21
    • /
    • 2010
  • This paper focuses on the hover performance experiment of a small-scale single rotor in partial ground conditions. In this study, small-scale rotor blade rotating device and floor panel are used to include partial ground effect. Thrust and torque were measured with varying collective pitch angles at fixed rotor rotating speed. The overlap distance between rotor and ground is d, the rotor diameter is D. It was shown that the ground effects have little effect on the rotor performance until d/D is 0.25. Four blade rotor has more increased thrust and more reduced power than those of two blade rotor because of stronger ground effect. In addition, it was also found that the thrust increases as a collective pitch angle become smaller. Based on these experiment results, we deduced new empirical equation considered blade number and partial ground effect.

Numerical Simulation of Turbulent Flow around 2-D Airfoils in Ground Effect (CFD에 의한 2차원 지면 효과익 주위의 난류유동계산)

  • H.H. Chun;R.H. Chang;M.S. Shin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.3
    • /
    • pp.28-40
    • /
    • 2002
  • Turbulent flows around two-dimensional wing sections in ground effect are analysed by incompressible RANS equations and a finite difference method. The Baldwin-Lomax algebraic turbulence model is used to simulate high Reynolds number flows. The main purpose of this study is to clarify the two-dimensional ground effect and its flow characteristics due to different ground boundary conditions, i.e., moving and fixed bottom boundary. As a first step, to validate the present numerical code, the computational result of Clark-Y(t/C 11.7%) is compared with published numerical results and experimental data. Then, NACA4412 section in ground effect is calculated for various ground clearances with two bottom boundary conditions. According to the computational results, the difference in the lift and moment simulated with the two bottom boundary conditions is negligible, but the drag force simulated by the fixed bottom is to some extent smaller than that by the moving bottom. Therefore, it can be concluded that the drag force measured in a wind tunnel with the fixed bottom could be smaller than that with the moving bottom.

Experimental Study on Lift Characteristics Considering Moving Ground Effects of Low Aspect Ratio Wings for Wing-In Ground Effect Crafts (이동지면 효과를 고려한 위그선용 저 종횡비 날개의 양력특성에 대한 실험연구)

  • Ahn, Byoung-Kwon;Koo, Sung-Phil;Lew, Jae-Moon;Nho, In-Sik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.5
    • /
    • pp.381-389
    • /
    • 2011
  • In this study, we are focusing our attention on lift characteristics of the low aspect wings for Wing-In Ground effect crafts (WIG). Experimental measurements at an open-type wind tunnel are carried out and results are comparatively presented. In order to simulate the realistic ground condition in where the WIG craft is flying, moving ground is implemented by a conveyor belt rotating with the same velocity of the inflow. We consider two different wings (NACA0012 and DHMTU section) which have four different aspect ratios (0.5, 1.0, 1.5 and 2.0). Forces acting on the wings are measured and lift characteristics are elaborately investigated for various different conditions. In addition, end-plate effects are estimated. Results are validated by comparing with theoretic solutions of the symmetric airfoil. Present results show that ground effects are differently generated in moving or fixed ground conditions, and hence left characteristics are affected by the ground condition. Consequently, accurate aerodynamic forces acting on the WIG craft are guaranteed in a realistic moving ground condition.

Analysis of the Influence of Ground Effect on the Aerodynamic Performance of a Wing Using Lifting-Line Method (양력선 방법을 이용한 지면효과가 날개의 공력성능에 미치는 영향 분석)

  • Lee, Chang Ho;Kang, Hyung Min;Kim, Cheolwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.4
    • /
    • pp.298-304
    • /
    • 2014
  • The lifting-line method based on Weissinger's method is extended to be able to analyze the ground effect. The method is applied to predict the variation of aerodynamic performance due to ground effect for the elliptic wing with aspect ratio of 10 and the wing of human powered aircraft. While the vortex strength of the wing increases slightly, the downwash decreases significantly as the wing approaches to the ground. For the wing of human powered aircraft, the increment of lift at the height of 2m is 5% than the lift outside the influence of ground effect. The decrease of induced drag at the height of wing span is 10% and at the height of 2m is 55% than that out of ground effect.

다변량 통계 분석 및 질량 균형법을 이용한 제주도 지하수의 수질 요소 분리

  • 고동찬;고경석;김용제;이승구
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.450-452
    • /
    • 2004
  • Using factor analysis and bivariate comparisons of major components in ground water, three geochemical processes were identified as controlling factors of ground water chemistry; 1) natural mineralization by water rock interactions, 2) effect of seawater which includes salinization by seawater near seashores and deposition of sea salt, and 3) nitrate contamination by N fertilization. Contribution of rainfall was also estimated from the measured composition of wet deposition. The geochemical processes were separated using total alkalinity as an indicator for natural mineralization, Cl for effect of seawater, and nitrate for N fertilization. Relatively high correlation of major components with nitrate suggests that nitrification of nitrogenous fertilizers significantly affects ground water chemistry. Total cations derived from nitrate sources have good linearity for nitrate in equivalent basis with a slope of 1.8, which is a mean of proton production coefficients in nitrification of two major compounds in nitrogenous fertilizers, ammonium and urea. Contribution of nitrate sources to base cations, Cl, and SO$_4$ in ground water was determined considering maximum contribution of natural mineralization to estimate a threshold of the effect of N fertilization for ground water chemistry, which shows W fertilization has a greatest effect than any other processes in ground water with nitrate concentration greater than 50 mg/L for Ca, Mg, Na and with concentration greater than 30 mg/L for Cl and SO$_4$.

  • PDF

Adaptive Sliding Mode Control based on Feedback Linearization for Quadrotor with Ground Effect

  • Kim, Young-Min;Baek, Woon-Bo
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.8 no.2
    • /
    • pp.101-110
    • /
    • 2018
  • This paper introduces feedback linearization (FL) based adaptive sliding mode control (ASMC) effective against ground effects of the quadrotor UAV. The proposed control has the capability of estimation and effective rejection of those effects by adaptive mechanism, which resulting stable attitude and positioning of the quadrotor. As output variables of quadrotor, x-y-z position and yaw angle are chosen. Dynamic extension of the quadrotor dynamics is obtained for terms of roll and pitch control input to be appeared explicitly in x-y-z dynamics, and then linear feedback control including a ground effect is designed. A sliding mode control (SMC) is designed with a class of FL including higher derivative terms, sliding surfaces for which is designed as a class of integral type of resulting closed loop dynamics. The asymptotic stability of the overall system was assured, based on Lyapunov stability methods. It was evaluated through some simulation that attitude control capability is stable under excessive estimation error for unknown ground effect and initial attitude of roll, pitch, and yaw angle of $30^{\circ}$ in all. Effectiveness of the proposed method was shown for quadrotor system with ground effects.

An Experimental Study on the Effect of Ground Heat Exchanger to the Overall Thermal Conductivity (지중열교환기 설치 조건이 지중 유효 열전도도에 미치는 영향에 관한 실험적 연구)

  • Kong, Hyoung-Jin;Lim, Hyo-Jae;Choi, Jae-Ho;Sohn, Byong-Hu
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.45-51
    • /
    • 2009
  • A ground-loop heat exchanger in a ground source heat pump system is an important unit that determines the thermal performance of a system and its initial cost. The size and performance of this heat exchanger is highly dependent on ground thermal properties. A proper design requires certain site-specific parameters, most importantly the ground effective thermal conductivity, the borehole thermal resistance and the undisturbed ground temperature. This study was performed to investigate the effect of some parameters such as borehole lengths, various grouting materials and U-tube configurations on ground effective thermal conductivity. In this study, thermal response tests were conducted using a testing device with 9-different ground-loop heat exchangers. From the experimental results, the length of ground-loop heat exchanger affects to the effective thermal conductivity. Among the various grouting materials, the bentonite-based grout with silica sand shows the largest thermal conductivity value.

  • PDF

Analysis of Meridians Potential as Ground Condition for Objectification of Acupuncture Effect (침술 효과의 객관화를 위한 접지조건에 따른 경락전위분석)

  • Lee, Yong-Heum;Lee, Qyoun-Jung;Kim, Eun-Geun;Kim, Han-Sung;Shin, Tae-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.2
    • /
    • pp.436-441
    • /
    • 2007
  • Background: As patients are positioned at insulated bed and practitioner are positioned at insulated floor or shoes, it could be a cause of lessening effect in acupuncture practice. We investigated how Ground connection could influence on the electrical meridian potential between practitioner and patient during acupuncture practice. Method: We treated 30 normal healthy subjects with acupuncture and measured changes in the electrical potential between the stomach meridian points ST-39 and ST-37 in response to light touch after insertion of a needle at ST-36. At first, we stimulated needle and measured electrical potentials for non ground, patient ground only, practitioner ground only, all ground, respectively. Result: All ground subject elicited positive mean potential $44.6{\pm}19.2{\mu}V$ and showed $181.4{\pm}59.7{\mu}V$ peak to peak potential. practitioner ground only showed negative mean potential $-51.5{\pm}9.3{\mu}V\;and\;367.4{\pm}27.8{\mu}V$ of peak to peak potential. Patient ground only revealed no mean potential as $2.9{\pm}1.3{\mu}V,\;16.4{\pm}11.9{\mu}V$ of peak to peak potential. All ground showed no mean potential as $1.6{\pm}0.7{\mu}V,\;3.3{\pm}1.9{\mu}V$ of peak to peak potential. respectively.

A Method for Reduction in Ground Turbulence by the Constructions in the Vicinity of Runway (활주로 주변 건물로 인하여 발생되는 Ground Turbulence 감소 방안)

  • Hong, Gyo-Young;Sheen, Dong-Jin
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.6
    • /
    • pp.820-830
    • /
    • 2009
  • This paper illustrates how simulation modeling can be reduced of ground turbulence by the constructions in the vicinity of airport runway and reports on a cause of ground turbulence using two-dimensional CFD analysis. Interesting result is that the shape in cross-section show the higher ground turbulence than the height of the building. The predicted results confirmed reduction of wind-effect by doing that set up the building with a fence, terraced shape or gap and it can generate turbulence in embryo at this stage. We knows that cross-wind effect in the vicinity of airport runway is highly dependent on the shape of the buildings.

  • PDF

The Effect of the Ground Composition on Thermal Environment in Multi -residential Building Block (공동주택 단지 내 지반 특성 및 지반 구성에 따른 열적 특성에 관한 연구)

  • Hwang, Hyo-Keun;Song, Doo-Sam
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.5
    • /
    • pp.88-97
    • /
    • 2009
  • In these days, it attracts our attention to create a green outdoor environment around the building block in urban area. Green space and permeable ground covering are increased by laws and regulations. According to these trends, variety researches for improving outdoor environment are accomplished at this moment. However, the problems for outdoor environment such as heat island effect and air contaminant in urban area are still reported. The purpose of this study is to examine the variables to affect the formation of outdoor thermal environment by quantitative analysis. As a initial study, in this paper, the effect of ground composition on changes of surface temperature and heat flux in multi-residential building were analyzed by field measurement and numerical simulation. Through field measurement, the surface temperature and heat flux of artificial ground in multi-residential building in Suwon city were measured. The result showed that the surface temperature was decreased by about $20^{\circ}C$ with afforestation of artificial ground compared with those of concrete covering. Moreover, the inner temperature of artificial ground was changed as same behaviors of outdoor temperature changes to depths of 20cm. In simulation, the effect of soil types and depth of artificial ground on the changes of the surface temperature and heat flux were analyzed. As results, the natural soil ground was more effective against lowering the surface temperature than any other cases in the analyzed cases.