• 제목/요약/키워드: ground building

검색결과 1,651건 처리시간 0.036초

Feasibility Study of High-Efficiency Ground Heat Exchanger using Double U-tube through a Real-Scale Experiment

  • Bae, Sangmu;Kim, Jaemin;Nam, Yujin
    • KIEAE Journal
    • /
    • 제17권4호
    • /
    • pp.33-39
    • /
    • 2017
  • Purpose: The use of renewable energy system is essential for building energy independence and saving energy consumption in the building sector. Among renewable energy technologies, ground source heat pump(GSHP) system is more energy-efficient and environmental-friendly than other heat source systems due to utilize stable ground heat source. However, the GSHP system requires a high initial installation cost and installation space in limited urban area, so it is difficult to have superiority in the market of heat source system. Therefore, it is necessary to develop the installation method of low-cost and improve system performance. This paper aims to evaluate the performance of double u-tube ground heat exchanger(GHX) and verify system feasibility through real-scale experiment. Method: In this study, the real-scale experiment of vertical closed-type GSHP system was conducted using double u-tube GHX and high-efficiency grout. Through the verification experiment, heat source temperature, heat exchange rate(HER) and seasonal performance factor(SPF) were measured according to the long-term operation. In addition, the feasibility analysis was conducted comparing to the single u-tube system. Result: In the results of experiment, average HER was 136.27 W/m and average SPF was 5.41. Furthermore, compared to the single u-tube, the installation cost of the developed system could be reduced about 70% in the same heating load condition.

사무시설에 수직형 지열원 냉 난방시스템의 경제성을 고려한 인입온도(EWT)에 관한 연구 (A Study on Entering Water Temperature in Vertical Closed Ground Loop System Considering the Economical Feasibility in Load of the Office Building)

  • 이병두;이대우;이세진
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.579-585
    • /
    • 2009
  • Recently, Vertical-Closed Loop system using geothermal which is the most efficient among the building cooling and heating systems is coming into wide spread due to assistance of domestic policies. However, there is a limitation that a design of ground heat exchanger taking 60% of construction cost is done by GLD and GLHEPRO programs without specific guidelines and consideration on Entering Water Temperature(EWT). For getting an optimal EWT, we analyzed the costs for construction of ground heat exchanger and cooling and heating for 15 years. In the results, reduction of construction costs as the length of ground heat exchanger shortens was much greater than increase of the electrical power consumption as COP gets low. EWT that COP of heat pump can be 3.76 or above was below $31^{\circ}C$ in cooling and was over $5^{\circ}C$ in heating.

  • PDF

Computational Soil-Structure Interaction Design via Inverse Problem Formulation for Cone Models

  • Takewaki, Izuru;Fujimoto, Hiroshi;Uetani, Koji
    • Computational Structural Engineering : An International Journal
    • /
    • 제2권1호
    • /
    • pp.33-42
    • /
    • 2002
  • A computationally efficient stiffness design method for building structures is proposed in which dynamic soil-structure interaction based on the wave-propagation theory is taken into account. A sway-rocking shear building model with appropriate ground impedances derived from the cone models due to Meek and Wolf (1994) is used as a simplified design model. Two representative models, i.e. a structure on a homogeneous half-space ground and a structure on a soil layer on rigid rock, are considered. Super-structure stiffness satisfying a desired stiffness performance condition are determined via an inverse problem formulation for a prescribed ground-surface response spectrum. It is shown through a simple yet reasonably accurate model that the ground conditions, e.g. homogeneous half-space or soil layer on rigid rock (frequency-dependence of impedance functions), ground properties (shear wave velocity), depth of surface ground, have extensive influence on the super-structure design.

  • PDF

The effect of different earthquake ground motion levels on the performance of steel structures in settlements with different seismic hazards

  • Isik, Ercan;Karasin, ibrahim Baran;Karasin, Abdulhalim
    • Structural Engineering and Mechanics
    • /
    • 제84권1호
    • /
    • pp.85-100
    • /
    • 2022
  • The updated Turkish Building Earthquake Code has been significantly renovated and expanded compared to previous seismic design codes. The use of earthquake ground motion levels with different probabilities of exceedance is one of the major advances in structural mechanics with the current code. This study aims to investigate the earthquake performance of steel structure in settlements with different seismic hazards for various earthquake ground motion levels. It is focused on earthquake and structural parameters for four different ground motion levels with different probabilities of exceedance calculated according to the location of the structure by the updated Turkish Hazard Map. For this purpose, each of the seven different geographical regions of Turkey which has the same seismic zone in the previous earthquake hazard map has been considered. Earthquake parameters, horizontal design elastic spectra obtained and comparisons were made for all different ground motion levels for the seven different locations, respectively. Structural analyzes for a sample steel structure were carried out using pushover analysis by using the obtained design spectra. It has been determined that the different ground motion levels significantly affect the expected target displacements of the structure for performance criteria. It is noted that the different locations of the same earthquake zone in the previous code with the same earthquake-building parameters show significant variations due to the micro zoning properties of the updated seismic design code. In addition, the main innovations of the updated code were discussed.

Smart passive control of buildings with higher redundancy and robustness using base-isolation and inter-connection

  • Murase, Mitsuru;Tsuji, Masaaki;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • 제4권6호
    • /
    • pp.649-670
    • /
    • 2013
  • It is known that a base-isolated building exhibits a large response to a long-duration, long-period wave and an inter-connected system without base-isolation shows a large response to a pulse-type wave. To compensate for each deficiency, a new hybrid passive control system is investigated in which a base-isolated building is connected to another building (free wall) with oil dampers. It is demonstrated that the present hybrid passive control system is effective both for pulse-type ground motions and long-duration and long-period ground motions and has high redundancy and robustness for a broad range of disturbances.

증축공사에 대한 리모델링 - ○○○직업재활센터의 사례 (Expansion and Remodeling - The Case of Vocational Rehabilitation Center)

  • 전의연;김규용
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 가을학술발표대회논문집
    • /
    • pp.135-136
    • /
    • 2023
  • The Vocational Rehabilitation Center Expansion Project, with a budget of 15.3 billion KRW, transformed an existing facility into a more eco-friendly, user-friendly, and publicly accessible space. The project involved expanding the building from a basement and two above-ground floors to a basement and six above-ground floors, addressing the shortage of facilities for people with disabilities while promoting eco-friendliness. Design concepts included eco-friendly MASS, improvements to the existing building, social adaptability, and user-centric evacuation measures. Value Engineering (VE) and technical reviews led to proposals for cost reduction and functionality enhancement. Completed in September 2019, the project, renamed "Se-um Center," now hosts seven disability welfare facilities, serving as a vital infrastructure improving the lives of individuals with disabilities in the local community.

  • PDF

도심지 깊은굴착시 주변 건물 및 매설관 손상평가 (Deep Excavation-induced Building and Utility Damage Assessment)

  • 유충식
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.85-95
    • /
    • 2002
  • A substantial portion of the cost of deep excavations in urban environments is devoted to prevent ground movements and their effects on adjacent buildings and utilites. Prediction of ground movements and assessment of the risk of damage to adjacent structures has become an essential part of the planning, design, and construction of a deep excavation project in the urban environments. This paper presents damage assessment techniques for buildings and utilities adjacent deep excavation, which can be readily used in practice.

  • PDF

기계학습 기반 지하매설물 속성 및 밀집도를 활용한 지반함몰 위험도 예측 모델 (Ground Subsidence Risk Grade Prediction Model Based on Machine Learning According to the Underground Facility Properties and Density)

  • 이성열;강재모;김진영
    • 한국지반환경공학회 논문집
    • /
    • 제24권4호
    • /
    • pp.23-29
    • /
    • 2023
  • 지반함몰의 주요 발생원인은 지하매설물의 손상으로 알려져 있다. 지반함몰은 상·하수관의 손상으로 인한 물길 형성에 따른 지반 내 토립자의 이동으로 공동이 형성되어 상부지반이 붕괴되는 메커니즘을 보이고 있다. 따라서 지반함몰은 지하매설물의 밀집도가 높은 도심지를 중심으로 발생하고 있으며, 사고 발생 시 인명 및 경제적 피해를 야기하므로 사고에 대한 대비가 반드시 필요하다. 이에 따라 지반함몰 위험을 예측하기 위한 연구가 꾸준히 수행되고 있으며, 본 연구에서는 ○○시의 2개 구를 대상으로 지반함몰 위험도 예측 모델을 제시하고자 하였다. 대상 지역의 지하매설물 속성 데이터(활용년수, 관직경)와 지하매설물 밀집도, 지반함몰 이력 데이터를 활용하여 데이터셋을 구축하고 전처리를 수행한 뒤, 기계학습 모델에 적용하여 최적의 평가지표가 도출되는 모델을 선정하였으며, 선정된 모델의 신뢰도를 평가하고 모델에서 도출되는 지반함몰 위험도 예측 시 활용된 영향인자의 중요도를 제시하고자 하였다.

물의 흐름을 고려한 인공동결 시스템의 열-수리 거동 연구 (Experimental and Numerical Study on Hydro-thermal Behaviour of Artificial Freezing System with Water Flow)

  • 진현우;이장근;유병현;고규현
    • 한국지반공학회논문집
    • /
    • 제36권12호
    • /
    • pp.17-25
    • /
    • 2020
  • 인공동결 공법은 지반에 영구적인 영향을 초래하지 않는 지반개량 공법으로 인공동결 공법의 효율성 및 설계기준을 결정하는 핵심인자는 물의 흐름이다. 따라서 인공동결 공법을 적용하기 위해서는 동결구근 및 벽체 형성에 물의 흐름이 미치는 영향에 대한 연구가 선행되어야 한다. 본 논문에서는 물의 흐름이 동결구근 및 벽체 형성에 미치는 영향을 극대화하기 위해 순수한 물을 활용한 실내실험과 수치해석 연구를 수행하였다. 열-수리 연계 해석모델을 새롭게 제안하고 이를 실험적으로 검증하였으며, 유량이 동결벽체 형성 시간 및 형상을 결정짓는 핵심인자임을 확인하였다. 나아가, 동결구근 및 벽체를 가시적으로 확인하기 어려운 지반에서 활용성이 높을 것으로 예상되는 동결벽체 형성 시간을 간접적으로 예측할 수 있는 방안을 새롭게 제시하였다.

RETScreen을 활용한 건물에서의 지열 히트펌프 시스템 적용 사전 분석연구 (Pre-Analysis Study on Ground Source Heat Pump System in Building with RETScreen)

  • 김유진;이광섭;이의준;강은철
    • 한국태양에너지학회 논문집
    • /
    • 제40권2호
    • /
    • pp.1-10
    • /
    • 2020
  • Korea government published renewable energy obligation policy that public building must be supplied some part of total consumption energy (2019: 27%, 2020: 30%). RETScreen is freely available global energy tool that developed by Canadian National Energy Laboratory to quantify energy saving to compare conventional system. This program can be performed energy modeling, cost analysis, greenhouse gas emission analysis and financial analysis. In this study, GSHP (Ground source heat pump) heating and cooling system were studied for the energy deliverly and ROI (Return On Investment) in an office building. Three cases were studied according to the number of HP (Heat pump) units for the 1,000㎡ office building located in Daejeon. Results indicated that the energy delivery of the case 1 (1 HP unit) covered 57% of the office building heating and cooling energy consumption. The case 2 (2 HP units) covered 87.8% and the case 3 (3 HP units) covered 96.8% of the office building energy consumption. The ROI of the case 1 indicated 7.9 years. While 8.2 years for the case 2 and 9.7 years for the case 3.