• Title/Summary/Keyword: griseus

Search Result 77, Processing Time 0.025 seconds

Purification and Characterization of Streptomyces griseus Trypsin Overexpressed in Streptomyces lividans

  • KOO, BON-JOON;KWANG HEE BAE;SI-MYONG BYUN;SOON-KWANG HONG
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.4
    • /
    • pp.333-340
    • /
    • 1998
  • Streptomyces griseus trypsin (SGT) is an extracellular proteinase produced by S. griseus. The sprT gene, which encodes premature SGT protein, was cloned into the plasmid pWHM3, a Streptomyces-E. coli shuttle vector. When the recombinant plasmid was introduced into Streptomyces lividans TK24, two proteins with molecular weights of 28 kDa and 42 kDa were detected. The 28-kDa protein was a SGT protein while the larger 42-kDa protein is thought to have been a premature form of the SGT protein. The SGT protein was purified to homogeneity via ammonium sulfate fractionation and many column chromatographies, including CM -sepharose chromatography, Mono-S chromatography, and Superose-12 chromatography, from the culture broth of S. lividans TK24 harboring the sprT gene. The N-terminal amino acid sequence, isoelectric points, and stabilities at various conditions of the SGT proteins purified from the Pronase and transformant were almost identical. The amount of the expressed SGT in S. lividans TK 24 was determined to be 5 times more than that of S. griseus based on the enzymatic activity against artificial substrate.

  • PDF

Comparative Studies on Streptomycin Producing Strains and Media (스트렙토마이신 생성균주들과 배지들에 대한 비교연구)

  • 김공환;조영애최석례구양모
    • KSBB Journal
    • /
    • v.4 no.2
    • /
    • pp.162-166
    • /
    • 1989
  • When various strains of Streptomyces griseus and S. galbus were examined for the ability on the production of streptomycin in tryptic soy(TS) broth, S. griseus ATCC 27001 was found to be the best. S. griseus ATCC 12475 and ATCC 23345 showed also good growth and favorable production of streptomycin. Examination of various complex media reported in fermentation literatures for the industrial production of streptomycin indicated that glucose-soybean media-sodium chloride (GSS) broth and K (Chucken) broth gave higher yields of streptomycin than others studied by us. Examination of the ingredients of media producing streptomycin in high yield indicated that some components in soybean activated the production of streptomycin. Addition of meat extract enhanced the yield of streptomycin but it could be substituted with distillers solubles without much effect on the yield. Addition of corn steep liquor decreased the production of streptomycin.

  • PDF

Cloning, DNA Sequence Determination, and Analysis of Growth-Associated Expression of the sodF Gene Coding for Fe- and Zn-Containing Superoxide Dismutase of Streptomyces griseus

  • Kim, Ju-Sim;Lee, Jeong-Kug
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.5
    • /
    • pp.700-706
    • /
    • 2000
  • Iron- and zinc-containing superoxide dismutase (FeZnSOD) and nickel-containing superoxide dismutase (NiSOD) are cytoplamic enzymes in Streptomyces griseus. The sodF gene coding for FeZnSOD was cloned from genomic Southern hybridization analysis with a 0.5-kb DNA probe, which was PCR-amplified with facing primers corresponding to the N-terminal amino acid of the purified FeZnSOD of S. griseus and a C-terminal region which is conserved among bacterial FeSODs and MnSODs. The sodF open reading frame (ORF) was comprised of 213 amino acid (22,430 Da), and the deduced sequence of the protein was highly homologous (86% identity) to that of FeZnSOD of Streptomyces coelicolor. The FeZnSOD expression of exponentially growing S. griseus cell was approximately doubled as the cell growth reached the early stationary phase. The growth-associated expression of FeZnSOD was mainly controlled at the transcriptional level, and the regulation was exerted through the 110 bp regulatory DNA upstream from the ATG initiation codon of the sodF gene.

  • PDF

Gene Disruption Using In Vivo and In Vitro Methylation in Streptomyces griseus

  • Maeng Jin-Soo;Bae Kyung-Sook;Kwak Jang-Yul
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.9
    • /
    • pp.1472-1476
    • /
    • 2006
  • Previous study demonstrated that the restriction barrier of Streptomyces griseus is almost completely bypassed by the Streptomyces-E. coli shuttle vectors passed through the E. coli GM161 strain and methylated with AluI and HpaII methyltransferases. The same DNA methylation of the genomic DNA fragments cloned the nonreplicative vectors generated integrative transformation and gene disruption of their chromosomal counterparts at high efficiencies in S. griseus. This result indicated that the efficiency of gene disruption depends on the efficient transfer of the incoming DNA into bacterial hosts.

Two Unrecorded Species of Sharks in Korean Waters (한국 연근해 상어류 2미기록종)

  • Choi, Youn;Im, Min Yeong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.53 no.6
    • /
    • pp.965-967
    • /
    • 2020
  • Two shark species captured in Samcheok in 2006 and Ulsan in 2013, previously reported as Heptranchias perlo and Alopias pelagicus, were confirmed to in fact be Hexanchus griseus and A. superciliosus, respectively, neither of which has previously been reported in Korea. H. griseus has six gill slits and is thus distinguishable from Heptranchias perlo, which has seven gill slits. A. superciliosus is clearly distinguishable from A. pelagicus and A. vulpinus, members of the family Alopiidae, due to its large eyes and a groove extending from the center of the head to both eyes. The keys to the family Hexanchidae, including H. griseus, and the family Alopiidae, including A. superciliosus, were presented along with the morphological characteristics of these two new shark species. These two species were given the Korean names "Gi-reum-sang-eo" and "Keun-nun-hwan-do-sang-eo," with reference to their morphological characteristics and English names.

Overproduction of Streptomyces griseus Protease A and B Induces Morphological Changes in Streptomyces lividans

  • Chi, Won-Jae;Kim, Jung-Mee;Choi, Si-Sun;Kang, Dae-Kyung;Hong, Soon-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.6
    • /
    • pp.1077-1086
    • /
    • 2001
  • The sprA and sprB gene encoding chymotrypsin-like proteases Streptomyces griseus protease A (SGPA) and Streptomyces griseus protease B (SGPB) and the sprT gene that encodes Streptomyces griseus trypsin (SGT) were cloned from Streptomyces griseus ATCC10137 and overexpressed in Streptomyces lividans TK24 as a heterologous host. The chymotrypsin activity of tole culture broth measured with the artificial chromogenic substrate , N-succinyl-ala-ala-pro-phe-p-nitroanilide, was 10, 14 and 14 units/mg in the transformants haboring the sprA, sprB and sprD genes, respectively. The growth of S. lividans reached the maximum cell mass after 4 days of culture, yet SGPA and SGPD production started in the stationary phase of cell growth and kept increasing for up to 10 days of culture in an R2YE medium. The trypsin activity of the culture broth measured with the artificial chromogenic substrate , N-${\alpha}$-benzoyl-DL- arginine-p-nitroanilide , was 16 units/mg and SGT production started in the stationary phase of cell growth and kept increasing for up to 10 days of culture in an R2YE medium. The introduction of the sprA gene into S, lividans TK24 triggered the biosynthesis of pigmented antibiotics, actinorhodin and undecylprodigiosin, and induced significant morphological changes in the colonies in Benedict, R2YE, and R1R2 media. In addition, the introduction of the sprT gene also induced morphological changes in the colony shape without affecting the antibiotic production, thereby implying that certain proteases would appear to play very important and specific roles in secondary-metabolites formation and morphological differentiation in Streptomyces.

  • PDF

Overexpression of the spr D Gene Encoding Strptomyces griseus Protease D Stimulates Actinorhodin Production in Streptomyces lividans

  • Choi, Si-Sun;Chi, Won-Jae;Lee, Jae-Hag;Kang, Sang-Soon;Jeong, Byeong-Chul;Hong, Soon-Kwang
    • Journal of Microbiology
    • /
    • v.39 no.4
    • /
    • pp.305-313
    • /
    • 2001
  • The spr D gene encoding Strptomyces griseus protease D(SGPD); a chymotrypsin-like proteae, was cloned from Strptomyces griseus IFO13350 and sequence. Most of the amino-acid sequence deduced from the nucleotide sequence is idential to that Strptomyces griseus IMRU3499 except that one amino acid has been deleted and Trp 369 has been substituted into Cys369 in the SGPD from S. griseus IFO13350 without affecting the protease activity. The spr D gene was overexpressed in Streptomyce liv-idans TK24 as a heterologous host. Various media with different compositions were also used to max-imize the productivity of SGPD inthe heterologous host. The SGPD productivity was best when the transformant S. lividans TK24 was cultivated in R2YE medium. The relative chymotrypsin activity of the culture broth measured with an artificial chromogenic substrate, N-scuccinyl-ala-ala-pro-phe-p-nitroanilide, was 16 units/ml. A high level of SGPD was also produced in YEME and SAAM medial but it was relatively lower that in R2YE medium and negligible amounts of SGPD were produced in GYE, GAE and Benedict media. The growth of S. lividans reacted the maximum level of cell mass at days 3 and 4 of the culture, but SGPD production started in the stationary phase of cell growth and kept increase in till the 10$^{th}$ day of culture in R2YE and YEME medium, but in GYE media the productivity reached maximum level at 8days of cultivation. The introduction of the spr D gene into S. lividans TK24 triggered biosyntheis of the pigmented antibiotic , actinorhodin, which implies some protease may paly a very improtant role in secondary-metabolite formation in sStreptomyces.

  • PDF

Molecular Cloning and Analysis of the Genes in the Vicinity of Streptomyces griseus Trypsin (SGT) Gene from Streptomyces griseus ATCC10137 (Streptomyces griseus ATCC10137에서 Trypsin 유전자 sprT의 주변 유전자군 분석)

  • Chi Won-Jae;Kim Mi-Soon;Kim Jong-Hee;Kang Dae-Kyung;Hong Soon-Kwang
    • Korean Journal of Microbiology
    • /
    • v.41 no.4
    • /
    • pp.255-261
    • /
    • 2005
  • A 6.7kb DNA fragment containing the sprT gene encoding Streptomyces griseus trypsin (SGT) was cloned from Streptomyces griseus ATCC 10137, and the complete nucleotide sequence was determined. Nucleotide sequence and deduced amino acid or the EcoRI-HindIII fragment revealed the presence or the six complete ORFs containing the sprT gene and one incomplete ORF, which were named ORF1, SGT, ORF2, ORF3, ORF4, ORF5, and ORF6, respectively. ORF1 has homology with the oxidoreductases from several organisms. ORF2 and ORF3 show similarity with unknown proteins and transcription regulator that belongs to the ArsR family, respectively. ORF4 and ORF5 show homology with the peptidoglycan bound protein with LPXTG motif from Listeria monocytogenes and the membrane protein with transmembrane helix from several organisms, respectively. The last ORF, ORF6, shows homology with the lipoprotein from Streptomyces avermitilis.

Evaluation on Anticancer Effect Against HL-60 Cells and Toxicity in vitro and in vivo of the Phenethyl Acetate Isolated from a Marine Bacterium Streptomyces griseus

  • Lee, Ji-Hyeok;Zhang, Chao;Ko, Ju-Young;Lee, Jung-Suck;Jeon, You-Jin
    • Fisheries and Aquatic Sciences
    • /
    • v.18 no.1
    • /
    • pp.35-44
    • /
    • 2015
  • We previously identified Streptomyces griseus as an anti-cancer agent (Kim et al., 2014). In this study, we isolated compounds from S. griseus and evaluated their anticancer effect and toxicity in vitro and in vivo. Preparative centrifugal partition chromatography (CPC) was used to obtain three compounds, cyclo($_{\small{L}}$-[4-hydroxyprolinyl]-$_{\small{L}}$-leucine], cyclo($_{\small{L}}$-Phe-trans-4-hydroxy-$_{\small{L}}$-Pro) and phenethyl acetate (PA). We chose PA, which had the highest anticancer activity, as a target compound for further experiments. PA induced the formation of apoptotic bodies, DNA fragmentation, DNA accumulation in $G_0/G_1$ phase, and reactive oxygen species (ROS) formation. Furthermore, PA treatment increased Bax/Bcl-xL expression, activated caspase-3, and cleaved poly-ADP-ribose polymerase (PARP) in HL-60 cells. Simultaneous evaluation in vitro and in vivo, revealed that PA exhibited no toxicity in Vero cells and zebrafish embryos. We revealed, for the first time, that PA generates ROS, and that this ROS accumulation induced the Bcl signaling pathway.

Effective Production of Chitinase and Chitosanase by Streptomyces griseus HUT 6037 Using Colloidal Chitin and Various Degrees of Deacetylation of Chitosan

  • Jung, Ho-Sup;Son, Jeong-Woo;Ji, Hong-Seok;Kim, Kwang
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.4 no.1
    • /
    • pp.26-31
    • /
    • 1999
  • The advantages of the organism Streptomycs griseus HUT 6037 is that the chitinase and chitosanase using chitinaceouse substrate are capable of hydrolyzing both amorphous and crystalline chitin and chitosan. We attempted to investigate the optimization of induction protocol for high-level production and secretion of chitosanase and the influence of chitin and partially deacetylated chitosan sources (75∼99% deacetylation). The maximum specific activity or chitinase has been found at 5 days cultivation with the 48 hours induction time using colloidal chitin as a carbon source. To investigate characteristic of chitosan activity according to substrate, we used chitosan with various degree of deacetylation as a carbon source and found that this strain accumulates chitosanase in the culture medium using chitosanaceous substrates rather than chitinaceous substrates. The highest chitosanase activity was also presented on 4 days with 99% deacetylated chitosan. The partially 53% deacetylated chitosan can secrete both chitinase and chitosanase which was defined as a soluble chitosan. The specific activities of chitinase and chitosanase were 0.89 at 3 days and 1.33 U/mg protein at 5 days, respectively. It indicate that chitosanase obtained from S. griseus HUT 6037 can hydrolyze GlcNAc-GlcN and GlcN-GlcN linkages by exo-splitting manner. This activity increased with increasing degree of deacetylation of chitosan. It is the first attempted to investigate the effects of chitosanase on various degrees of deacetylations of chitosan by S. griseus HUT 6037. The highest specific activity of chitosanase was obtained with 99% deacetylated chitosan.

  • PDF