• Title/Summary/Keyword: gripping

Search Result 129, Processing Time 0.03 seconds

Tracking Robot Control of 2D Moving Target by a Robot Vision

  • Kim, Dong-Hwan;Jeon, Byoung-Joon;Hong, Young-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.99.4-99
    • /
    • 2002
  • A two-dimensional moving target is necessarily captured by a 5 dot robot system using a robot vision technique. Here, a robot vision system with a visual skill so that it can take information for a moving target or object, specially two dimensionally moving, is introduced and its algorithm and control strategy are presented associated with it. The tracking algorithm is proposed and its performance is verified by experiment. The camera first captures the object, then it captures again after certain second. The position difference generates the horizontal and vertical velocities of the moving target, hence the final destination is estimated at gripping line. At the same time, the robot s...

  • PDF

Implementation and experiment of bilateral force control for a telemanipulator (원격조작기의 양방향 힘제어의 구현과 실험)

  • 천자홍;정명진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.838-843
    • /
    • 1991
  • A telemanipulator that reflects grasping force of the slave gripper to the human operator was implemented in order for manipulation to be more delicate and safe. An industrial robot gripper was used as the slave manipulator. The master manipulator was constructed to make it easy for a human operator to direct the slave and to feel the reflected gripping force. Reflected force was generated by the servomotor of the master. The force signal and position signals of the master and the slave was used to generate driving force signal. Basically position-position type control was used. Miner force feedback is added to improve the performance of the system. Implemented system was tested by colliding two fingers of the slave manipulator, and here switching was used to archive more fast and easy manipulation.

  • PDF

Structural Analysis of Multi-size Power Chuck for Lathes (선반용 멀티사이즈 파워 척의 구조해석)

  • 김문기;유중학;윤영한;국정한;박종권
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.3
    • /
    • pp.107-113
    • /
    • 1999
  • The purpose of this study is to analyze multi-size power chuck which can chuck work pieces having various sizes automatically and be used suitably to an exclusive product line in the field of automotive industry. Gripping force, accuracy, and stiffness about the chuck are especially considered for the analysis. MSC/NASTRAN software is used for FEM analysis. Also, the effects of centrifugal force which occurs when chuck body rotates and compressive stresses which occur at contacting area in between chuck body and collet are estimated.

  • PDF

Design and investigation of a shape memory alloy actuated gripper

  • Krishna Chaitanya, S.;Dhanalakshmi, K.
    • Smart Structures and Systems
    • /
    • v.14 no.4
    • /
    • pp.541-558
    • /
    • 2014
  • This paper proposes a new design of shape memory alloy (SMA) wire actuated gripper for open mode operation. SMA can generate smooth muscle movements during actuation which make them potentially good contenders in designing grippers. The principle of the shape memory alloy gripper is to convert the linear displacement of the SMA wire actuator into the angular displacement of the gripping jaw. Steady state analysis is performed to design the wire diameter of the bias spring for a known SMA wire. The gripper is designed to open about an angle of $22.5^{\circ}$ when actuated using pulsating electric current from a constant current source. The safe operating power range of the gripper is determined and verified theoretically. Experimental evaluation for the uncontrolled gripper showed a rotation of $19.97^{\circ}$. Forced cooling techniques were employed to speed up the cooling process. The gripper is simple and robust in design (single movable jaw), easy to fabricate, low cost, and exhibits wide handling capabilities like longer object handling time and handling wide sizes of objects with minimum utilization of power since power is required only to grasp and release operations.

A study on Precise Grasping Control of End-Effector for Parts Assembling and Handling (부품조립 및 핸들링을 위한 말단효과장치의 정밀 그리핑 제어에 관한 연구)

  • Ha, Un-Tae;Sung, Ki-Won;Kang, Eun-Wook
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.3
    • /
    • pp.173-180
    • /
    • 2015
  • In this paper, we propose a new precise control technology of robotic gripper for assembling and handling of part. When a robot manipulator interacts mechanically with its environment to perform tasks such as assembly or edge-finishing, the end-effector is thereby constrained by the environment. Therefore grasping force control is very important, since it increases safety due to monitoring of contact force. A comparison of various force control architecture is reported. Different force control methods can often be configured to achieve similar results for a given task, and the choice of control algorithm depends strongly on the application or on the characteristics of a particular robot. In the research, the adjustable gripping force can be controlled and improved the accuracy using the artificial intelligence techniques.

Educational Value of the Woodworking -The Handworks from the Viewpoint of Developing Manual Function- (목공의 교육적 가치에 대한 고찰 -수공노작교육 중심으로-)

  • Lee, Min-Gyoung;Kang, Ho-Yang
    • Journal of the Korea Furniture Society
    • /
    • v.19 no.5
    • /
    • pp.403-410
    • /
    • 2008
  • This study is a background for developed woodworking educational program. To achieve the propose of this research, related to handwork to figure out the concept, changes and characteristics of handwork and the products of handwork. The areas of woodworking needs basic hand function of gripping and hooking, strong hands and stability of hand operation. Activities of this area can enhance the ability of controlling the strength of hand and the stability of hand operation. The use of both hands in woodworking promotes the coordination of both hands and handling ability. In the woodworking, diverse functions of hands are used with various tools. Each hand may be move differently, and the hand operation is elaborated. These features of woodworking help growing coordinations and hand function, and developing brain and creativeness.

  • PDF

Implementation of a Piezoresistive MEMS Cantilever for Nanoscale Force Measurement in Micro/Nano Robotic Applications

  • Kim, Deok-Ho;Kim, Byungkyu;Park, Jong-Oh
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.789-797
    • /
    • 2004
  • The nanoscale sensing and manipulation have become a challenging issue in micro/nano-robotic applications. In particular, a feedback sensor-based manipulation is necessary for realizing an efficient and reliable handling of particles under uncertain environment in a micro/nano scale. This paper presents a piezoresistive MEMS cantilever for nanoscale force measurement in micro robotics. A piezoresistive MEMS cantilever enables sensing of gripping and contact forces in nanonewton resolution by measuring changes in the stress-induced electrical resistances. The calibration of a piezoresistive MEMS cantilever is experimentally carried out. In addition, as part of the work on nanomanipulation with a piezoresistive MEMS cantilever, the analysis on the interaction forces between a tip and a material, and the associated manipulation strategies are investigated. Experiments and simulations show that a piezoresistive MEMS cantilever integrated into a micro robotic system can be effectively used in nanoscale force measurements and a sensor-based manipulation.

HANDLING MECHANISM IN GRAFTING ROBOT

  • Kajikawa, T.;Nishiura, Y.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.313-317
    • /
    • 2000
  • In this research, a grafting robot with plug in method is used. Plug in method is a method that uses a tapered axis for scion and a tapered hole for stock as processing style of conjugation parts. In the case of handling a grafting seedling, gripping a stem is doing with simple mechanisms of devising to reduce damages to stems. For example, providing cushions between gripper and stem, and fitting a gripper to a stem. Both scions and stocks need cutting, but there is bigger influence for scions than stocks, so problems of cutting scions and special qualities of grippers are necessary to investigate.

  • PDF

Measurement of Grip and Feed Force in the Evaluation of Hand-arm Vibration (수완계 진동 평가에 영향을 미치는 작용력의 측정)

  • 최석현;장한기
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.1038-1042
    • /
    • 2003
  • In order to evaluate dynamic impedance of a hand-arm system it is necessary to measure the hand-transmitted vibration and the reaction force at the same time while gripping the vibrating handle. In the study a device was developed to measure both the vibration and the force. The device consists of a measurement handle with four strain gauge and two accelerometers and a PC based control system with a program for the signal processing and evaluation of the hand-transmitted vibration and reaction force. The handle was installed on the vibration shaker so that it can move by the generated signal from the control system. As an application of the system dynamic reaction force and the frequency weighted acceleration at the handle attached to the shaker were measured at various grip force and feed force. This system will be very useful in the area of impedance measurement and the evaluation of performance of anti-vibration gloves.

  • PDF

Development of the Robot's Gripper Control System using DSP (DSP 를 이용한 로봇의 그리퍼 제어장치의 개발)

  • Kim Gab-Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.5 s.182
    • /
    • pp.77-84
    • /
    • 2006
  • This paper describes the design and implementation of a robot's gripper control system. In order to safely grasp an unknown object using the robot's gripper, the gripper should detect the force of gripping direction and the force of gravity direction, and should perform the force control using the detected forces and the robot's gripper control system. In this paper, the robot's gripper control system is designed and manufactured using DSP(Digital Signal Processor), and the gripper is composed of two 6-axis force/moment sensors which measures the Fx force(force of x-direction), Fy force, Fz force, and the Mx moment(moment of x-direction), My moment, Mz moment at the same time. The response characteristic test of the system is performed to determine the proportional gain Kp and the integral gain Ki of PI controller. As a result, it is shown that the developed robot's gripper control system grasps an unknown object safely.