• Title/Summary/Keyword: grid system

Search Result 4,070, Processing Time 0.036 seconds

The Numerical Study on the Flow Control of Ammonia Injection According to the Inlet NOx Distribution in the DeNOx Facilities (탈질설비 내에서 입구유동 NOx 분포에 따른 AIG유동제어의 전산해석적 연구)

  • Seo, Deok-Cheol;Kim, Min-Kyu;Chung, Hee-Taeg
    • Clean Technology
    • /
    • v.25 no.4
    • /
    • pp.324-330
    • /
    • 2019
  • The selective catalytic reduction system is a highly effective technique for the denitrification of the flue gases emitted from the industrial facilities. The distribution of mixing ratio between ammonia and nitrogen oxide at the inlet of the catalyst layers is important to the efficiency of the de-NOx process. In this study, computational analysis tools have been applied to improve the uniformity of NH3/NO molar ratio by controlling the flow rate of the ammonia injection nozzles according to the distribution pattern of the nitrogen oxide in the inlet flue gas. The root mean square of NH3/NO molar ratio was chosen as the optimization parameter while the design of experiment was used as the base of the optimization algorithm. As the inlet conditions, four (4) types of flow pattern were simulated; i.e. uniform, parabolic, upper-skewed, and random. The flow rate of the eight nozzles installed in the ammonia injection grid was adjusted to the inlet conditions. In order to solve the two-dimensional, steady, incompressible, and viscous flow fields, the commercial software ANSYS-FLUENT was used with the k-𝜖 turbulence model. The results showed that the improvement of the uniformity ranged between 9.58% and 80.0% according to the inlet flow pattern of the flue gas.

A Study on the Ground Surface Area Calculation of Golf Course using Triangulated Irregular Network (불규칙 삼각망을 이용한 골프장의 지표면적 산출에 관한 연구)

  • Kim, Sang-Seok;Chang, Yong-Ku;Kwak, Jae-Ha;Kim, Youn-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.4 no.4
    • /
    • pp.61-71
    • /
    • 2001
  • In these days, surveying instruments are developing rapidly and the precision is improving continuously. The reappearance of three dimensional terrains of a great precision are possible and the calculation of the area or the volume has a high precision due to the development of the technique of the spatial information system using computer. But actually, in construction site they calculate two-dimensional area using the traditional method, plane table surveying, planimeter, and then get ground surface area through timing the slope correction factor. In this study, I show the defect and inefficiency of the calculation of the area by the traditional methods and survey the area with Electronic Distance Measuring equipment and GPS instrument. With these data, we made the three dimensional terrain model and calculated two-dimensional area and ground surface area. After that, I compared areas that calculated by algorithm method of irregular triangle and analysis of grid method with standardizing the area that calculated by the traditional method. Finally, I suggested more effective and precise method in calculating ground surface area.

  • PDF

Topographic Survey at Small-scale Open-pit Mines using a Popular Rotary-wing Unmanned Aerial Vehicle (Drone) (보급형 회전익 무인항공기(드론)를 이용한 소규모 노천광산의 지형측량)

  • Lee, Sungjae;Choi, Yosoon
    • Tunnel and Underground Space
    • /
    • v.25 no.5
    • /
    • pp.462-469
    • /
    • 2015
  • This study carried out a topographic survey at a small-scale open-pit limestone mine in Korea (the Daesung MDI Seoggyo office) using a popular rotary-wing unmanned aerial vehicle (UAV, Drone, DJI Phantom2 Vision+). 89 sheets of aerial photos could be obtained as a result of performing an automatic flight for 30 minutes under conditions of 100m altitude and 3m/s speed. A total of 34 million cloud points with X, Y, Z-coordinates was extracted from the aerial photos after data processing for correction and matching, then an orthomosaic image and digital surface model with 5m grid spacing could be generated. A comparison of the X, Y, Z-coordinates of 5 ground control points measured by differential global positioning system and those determined by UAV photogrammetry revealed that the root mean squared errors of X, Y, Z-coordinates were around 10cm. Therefore, it is expected that the popular rotary-wing UAV photogrammetry can be effectively utilized in small-scale open-pit mines as a technology that is able to replace or supplement existing topographic surveying equipments.

A Study of the Diagnosis of the Health of University Library Organizations (대학도서관 조직건강성 진단에 관한 연구)

  • Yoon Yung Dai
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.19
    • /
    • pp.63-112
    • /
    • 1990
  • The environment of the modern library is changing rapidly with advancements in information technology, massive increse in information, and with the changing needs of users for information in order to keep up with developments in science and technology. The library should also be in a constant state of change in accordance with the changing environment. But the current situation is that library organizations in Korea do not show any change. Here arises the need to diagnose the health of these organization. Organizational innovations can be achieved either by change in the organizational structure or administrative methods or in personal attitudes. In making organizational innovations, however, it is not sufficient only to change the organizational structure or the administrative methods without changing personal attitudes. The purpose of this thesis is to diagnose the health of university library organizations in Korea and to suggest prescriptions based on the results of this diagnosis, by means of organization development theory. In this study, the action research model and the diagnostic model were developed for the health of university library organization in Korea. The action research model consisted of 3 steps: diagnosis, intervention and evaluation. The diagnostic model comprised diagnostic criterion and diagnostic indicators. The health of an organization was selected as the diagnostic criterion. Diagnostic indicators were divided into 3 levels: personal job-satisfaction at the individual level, cohesiveness at the group level, and the organizational climate at the organizational level. Both the interview and the questionaire were used as diagnostic methods. The questionaire form was designed according to the Likert typle 5-point scale. For the investigation, 10 university libraries were selected from the private universities in Seoul, and questionaire sheets were sent to their 156 librarians and responses were received from 116 persons. An interview was carried out with a selected chief of departments of the library concerned. The results of the diagnosis show that the average personal job­satisfaction was 3.57, the group cohesiveness was 3.15 and organizational climate was 2.93, and accordingly the comprehensive health indicator was 3.22. The health of university library organizations in Korea was generally on the decline at all 3 levels. In particular, the organizational climate was in a very weak state. Most problems concern dissatisfaction with personnel policy, communications and non-professionally qualified directors. As the prescriptions, the following was suggested: institutionalization of the staff meeting for resolving problems with communication, appointement of professional directors, performance appraisal, conferring faculty status for librarians, and a suggest system. And for the improvement of the organizational climate, managerial grid training was suggested as one of the educational strategies for organizational development.

  • PDF

Precision monitoring of radial growth of trees and micro-climate at a Korean Fir (Abies koreana Wilson) forest at 10 minutes interval in 2016 on Mt. Hallasan National Park, Jeju Island, Korea

  • Kim, Eun-Shik;Cho, Hong-Bum;Heo, Daeyoung;Kim, Nae-Soo;Kim, Young-Sun;Lee, Kyeseon;Lee, Sung-Hoon;Ryu, Jaehong
    • Journal of Ecology and Environment
    • /
    • v.43 no.2
    • /
    • pp.226-245
    • /
    • 2019
  • To understand the dynamics of radial growth of trees and micro-climate at a site of Korean fir (Abies koreana Wilson) forest on high-altitude area of Mt. Hallasan National Park, Jeju Island, Korea, high precision dendrometers were installed on the stems of Korean fir trees, and the sensors for measuring micro-climate of the forest at 10 minutes interval were also installed at the forest. Data from the sensors were sent to nodes, collected to a gateway wireless, and transmitted to a data server using mobile phone communication system. By analyzing the radial growth data for the trees during the growing season in 2016, we can estimate that the radial growth of Korean fir trees initiated in late April to early May and ceased in late August to early September, which indicates that period for the radial growth was about 4 months in 2016. It is interesting to observe that the daily ambient temperature and the daily soil temperature at the depth of 20 cm coincided with the values of about 10 ℃ when the radial growth of the trees initiated in 2016. When the radial growth ceased, the values of the ambient temperature went down below about 15 ℃ and 16 ℃, respectively. While the ambient temperature and the soil temperature are evaluated to be the good indicators for the initiation and the cessation of radial growth, it becomes clear that radii of tree stems showed diurnal growth patterns affected by diurnal change of ambient temperature. In addition, the wetting and drying of the surface of the tree stems affected by precipitation became the additional factors that affect the expansion and shrinkage of the tree stems at the forest site. While it is interesting to note that the interrelationships among the micro-climatic factors at the forest site were well explained through this study, it should be recognized that the precision monitoring made possible with the application of high resolution sensors in the measurement of the radial increment combined with the observation of 10 minutes interval with aids of information and communication technology in the ecosystem observation.

Comparative Study of Commercial CFD Software Performance for Prediction of Reactor Internal Flow (원자로 내부유동 예측을 위한 상용 전산유체역학 소프트웨어 성능 비교 연구)

  • Lee, Gong Hee;Bang, Young Seok;Woo, Sweng Woong;Kim, Do Hyeong;Kang, Min Ku
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.12
    • /
    • pp.1175-1183
    • /
    • 2013
  • Even if some CFD software developers and its users think that a state-of-the-art CFD software can be used to reasonably solve at least single-phase nuclear reactor safety problems, there remain limitations and uncertainties in the calculation result. From a regulatory perspective, the Korea Institute of Nuclear Safety (KINS) is presently conducting the performance assessment of commercial CFD software for nuclear reactor safety problems. In this study, to examine the prediction performance of commercial CFD software with the porous model in the analysis of the scale-down APR (Advanced Power Reactor Plus) internal flow, a simulation was conducted with the on-board numerical models in ANSYS CFX R.14 and FLUENT R.14. It was concluded that depending on the CFD software, the internal flow distribution of the scale-down APR was locally somewhat different. Although there was a limitation in estimating the prediction performance of the commercial CFD software owing to the limited amount of measured data, CFX R.14 showed more reasonable prediction results in comparison with FLUENT R.14. Meanwhile, owing to the difference in discretization methodology, FLUENT R.14 required more computational memory than CFX R.14 for the same grid system. Therefore, the CFD software suitable to the available computational resource should be selected for massively parallel computations.

Groundwater Flow Model of Igsan Area (익산 지역의 지하수 유동 모델)

  • Hamm, Se Yeong;Kim, Youn Ki
    • Economic and Environmental Geology
    • /
    • v.22 no.4
    • /
    • pp.381-393
    • /
    • 1989
  • Hydrogeological modelling was performed to evaluate groundwater flow system in Igsan Area. The study area extends over $790km^2$. The geology consists of Jurassic Daebo granite and gneissose granite and Precambrian metamorphic rocks. The capability of pumping yield is the highest in gneissose granite region among them due to comparatively thick weathered zone with thickness ranging from 10m to 25m. The Colorado State University Finite Difference Model was used for the model simulation. The model was divided into 28 rows and 31 columns with variable grid spacing. The model was calibrated under steady-state and unsteady-state conditions. In the steady-state simulation, the model results were compared with measured water table contours in September 1985 with determining hydraulic conductivities and net recharge rates during rainy season. Unsteady state simulation was done to know the aquifer response due to groundwater abstraction. The non- steady state calibration was conducted to determine the distribution and magnitudes of specific yields and discharge/recharge rates during dry season as matching water level altitudes in May 1986. The calibrated model was used to simulate water level vaiation caused by groundwater withdrawal and natural recharge from 1 October, 1985 until 30 September, 1995. The calibrated model can be used to groundwater development schemes on regional groundwater levels, but it cannot be used to simulate local groundwater level change at a specific site.

  • PDF

Investigation of Turbulent Analysis Methods for CFD of Gas Dispersion Around a Building (건물주위의 가스 확산사고에 대한 CFD 난류 해석기법 검토)

  • Ko, Min Wook;Oh, Chang Bo;Han, Youn Shik;Do, Kyu Hyung
    • Fire Science and Engineering
    • /
    • v.29 no.5
    • /
    • pp.42-50
    • /
    • 2015
  • Three simulation approaches for turbulence were applied for the computation of propane dispersion in a simplified real-scale urban area with one building:, Large Eddy Simulation (LES), Detached Eddy Simulation (DES), and Unsteady Reynolds Averaged Navier-Stokes (RANS). The computations were performed using FLUENT 14, and the grid system was made with ICEM-CFD. The propane distribution depended on the prediction performance of the three simulation approaches for the eddy structure around the building. LES and DES showed relatively similar results for the eddy structure and propane distribution, while the RANS prediction of the propane distribution was unrealistic. RANS was found to be inappropriate for computation of the gas dispersion process due to poor prediction performance for the unsteady turbulence. Considering the computational results and cost, DES is believed to be the optimal choice for computation of the gas dispersion in a real-scale space.

An Empirical Study on the Relationship between Subway Trips and Characteristics of Subway Catchment Area. (역세권 특성이 지하철 이용수요에 미치는 영향분석)

  • Jo, Hyun-Woo;Lee, Seok-Hwan;Shin, Kang-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.12
    • /
    • pp.5191-5198
    • /
    • 2010
  • Although numerous studies have analyzed the relationship between subway travel demand (STD) and various characteristics of subway catchment area (SCA), a few studies examined the relationship between STD and the structure of pedestrian networks within each SCA. Hence, this study evaluates the structure of pedestrian networks within 79 SCAs in the city of Busan using Space syntax and investigates the relationship between STD and several characteristics of SCA including the spatial structure of pedestrian network. The analysis results show that the spatial integration of pedestrian networks within the SCAs, which represents the magnitudes of walking accessibility to subway station, is positively associated with STD among the three spatial indexes such as integration, connectivity, and intelligibility. In addition, the results show that STD significantly increases as the number of travel gathering facilities and the average floor area ratio within the SCAs increase. This study ultimately corroborates that designing the grid pedestrian network and assigning the travel gathering facilities to the compact buildings within SCAs are needed to ameliorate the spatial structure of SCA in the city of Busan as transit-oriented development system.

Accurate Localization of Metal Electrodes Using Magnetic Resonance Imaging (자기공명영상을 이용한 금속전극의 정확한 위치 결정)

  • Joe, Eun-Hae;Ghim, Min-Oh;Ha, Yoon;Kim, Dong-Hyun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.15 no.1
    • /
    • pp.11-21
    • /
    • 2011
  • Purpose : Localization using MRI is difficult due to susceptibility induced artifacts caused by metal electrodes. Here we took an advantage of the B0 pattern induced by the metal electrodes by using an oblique-view imaging method. Materials and Methods : Metal electrode models with various diameters and susceptibilities were simulated to understand the aspect of field distortion. We set localization criteria for a turbo spin-echo (TSE) sequence usingconventional ($90^{\circ}$ view) and $45^{\circ}$ oblique-view imaging method through simulation of images with various resolutions and validated the criteria usingphantom images acquired by a 3.0T clinical MRI system. For a gradient-refocused echo (GRE) sequence, which is relatively more sensitive to field inhomogeneity, we used phase images to find the center of electrode. Results : There was least field inhomogeneity along the $45^{\circ}$ line that penetrated the center of the electrode. Therefore, our criteria for the TSE sequence with $45^{\circ}$ oblique-view was coincided regardless of susceptibility. And with $45^{\circ}$ oblique-view angle images, pixel shifts were bidirectional so we can detect the location of electrodes even in low resolution. For the GRE sequence, the $45^{\circ}$ oblique-view anglemethod madethe lines where field polarity changes become coincident to the Cartesian grid so the localization of the center coordinates was more facilitated. Conclusion : We suggested the method for accurate localization of electrode using $45^{\circ}$ oblique-view angle imaging. It is expected to be a novelmethodto monitoring an electrophysiological brain study and brain neurosurgery.