• Title/Summary/Keyword: grid interval

Search Result 103, Processing Time 0.026 seconds

Photo Clustering using Maximal Clique Finding Algorithm and Its Visualized Interface (최대 클리크 찾기 알고리즘을 이용한 사진 클러스터링 방법과 사진 시각화 인터페이스)

  • Ryu, Dong-Sung;Cho, Hwan-Gue
    • Journal of the Korea Computer Graphics Society
    • /
    • v.16 no.4
    • /
    • pp.35-40
    • /
    • 2010
  • Due to the distribution of digital camera, many work for photo management has been studied. However, most work use a sequential grid layout which arranges photos considering one criterion of digital photo. This interface makes users have lots of scrolling and concentrate ability when they manage their photos. In this paper, we propose a clustering method based on a temporal sequence considering their color similarity in detail. First we cluster photos using Cooper's event clustering method. Second, we makes more detailed clusters from each clustered photo set, which are clustered temporal clustering before, using maximal clique finding algorithm of interval graph. Finally, we arrange each detailed dusters on a user screen with their overlap keeping their temporal sequence. In order to evaluate our proposed system, we conducted on user studies based on a simple questionnaire.

Estimation of Tree Heights from Seasonal Airborne LiDAR Data (계절별 항공라이다 자료에 의한 수고 추정)

  • Jeon, Min-Cheol;Jung, Tae-Woong;Eo, Yang-Dam;Kim, Jin-Kwang
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.4
    • /
    • pp.441-448
    • /
    • 2010
  • This paper estimates the tree height using Airborne LiDAR that is obtained for each season to analyze its influence based on a canopyclosure and data fusion. The tree height was estimated by extracting the First Return (RF) from the tree and the Last Return (LR) from the surface of earth to assume each tree via image segmentation and to obtain the height of each tree. Each data on tree height that is collected from seasonal data and the result of tree height acquired from the data fusion were compared. A tree height measuring device was used to measure on site and its accuracy was compared. Also, its applicability on the result of fused data that is obtained through the Airborne LiDAR is examined. As a result of the experiment, the result of image segmentation for an individual tree was closer to the result of site study for 1 meter interval when compared to the 0.5 meter interval of point cloud. In case of the tree height, the application of fused data enables a closer site measurement result than the application of data for each season.

Optimization Design for the Use of Mechanical Switch in Z-source DC Circuit Breaker (Z-source 직류 차단기의 기계식 스위치 적용을 위한 최적화 설계)

  • Lee, Hyeon Seung;Lee, Kun-A
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.1
    • /
    • pp.12-19
    • /
    • 2022
  • Circuit breakers are a crucial factor in ensuring the safety of a Direct Current (DC) grid. One type of DC circuit breaker, the Z-source DC circuit breaker (ZCB), uses a thyristor, which is a type of semiconductor switch. In the event of a fault in the circuit, the ZCB isolates the fault by generating a zero crossing current in the thyristor. The thyristor quickly and actively isolates the fault while generating a zero crossing current, but thyristor switch cannot control turn-off and the allowable current is lower than the current of the mechanical switch. Therefore, it is best to use a mechanical switch with a high allowable current capacity that is capable of on/off control. Due to the slow reaction time of mechanical switches, they may not isolate the fault during the zero crossing current time interval created by the existing circuit. In this case, the zero crossing current time can be increased by using the property that hinders the rapid change in the current of the inductor. This paper will explore whether adding system inductance to increase the zero crossing current time interval is a solution to this problem. The simulation of changing inductor and capacitor (LC) of the circuit is repeated to find an optimal change in the zero crossing current time according to the LC change and provides an inductor and capacitor range optimized for a specific load. The inductor and capacitor range are expected to provide optimization information in the form LC values for future applications of ZCB's using a mechanical switch.

Communication Data Format Design for LEO Satellite with Packet Utilization Standard (Packet Utilization 개념을 이용한 저궤도 위성의 데이터 통신 포맷 설계)

  • Lee, Na-Young;Lee, Jin-Ho;Suk, Byong-Suk
    • Journal of Satellite, Information and Communications
    • /
    • v.3 no.2
    • /
    • pp.13-17
    • /
    • 2008
  • The conventional telemetry system of Korean low-earth orbiting satellites has certain limitations in accommodating various missions. As the payload becomes complex, it requires very complicated operational concepts in terms of telemetry. With the current design, the telemetry formats have to be rebuilt whenever new payloads or operation concepts are involved, and many constraints in operation shall be produced due to the lacks of its flexibility. As the capability and performance of a satellite have been improved, the communication structure of the satellite should be improved to gather more telemetry data. For the efficiency of data handling, it is necessary to change the grid based telemetry system in which the downlink interval and types for telemetry was limited. Comparing the fixed data map such as grid type, the packet based telemetry system can be operated as flexible and various types of packet can be designed such as the dump packet and the event packet. The sequence of the packets can be modified or newly defined to manage the massive satellite state of health data. In this paper, a new strategy for the telemetry development partially derived from PUS (Packet Utilization Standard) of European Space Agency, which provides enhanced features for the accommodation of payloads & operational requirements, is presented.

  • PDF

A study on digital locking device design using detection distance 13.4mm of human body sensing type magnetic field coil (인체 감지형 자기장 코일의 감지거리 13.4mm를 이용한 디지털 잠금장치 설계에 관한 연구)

  • Lee, In-Sang;Song, Je-Ho;Bang, Jun-Ho;Lee, You-Yub
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.9-14
    • /
    • 2016
  • This study evaluated a digital locking device design using detection distance of 13.4mm of a human body sensing type magnetic field coil. In contrast to digital locking devices that are used nowadays, the existing serial number entering buttons, lighting, number cover, corresponding pcb, exterior case, and data delivery cables have been deleted and are only composed of control ON/OFF power switches and emergency terminals. When the magnetic field coil substrates installed inside the inner case detects the electric resistance delivered from the opposite side of the 12mm interval exterior contacting the glass body part, the corresponding induced current flows. At this time, the magnetic field coil takes the role as a sensor when coil frequency of the circular coil is transformed. The magnetic coil as a sensor detects a change in the oscillation frequency output before and after the body is detected. This is then amplified to larger than 2,000%, transformed into digital signals, and delivered to exclusive software to compare and search for embedded data. The detection time followed by the touch area of the body standard to a $12.8{\emptyset}$ magnetic field coil was 30% contrast at 0.08sec and 80% contrast at 0.03sec, in which the detection distance was 13.4mm, showing the best level.

Precision monitoring of radial growth of trees and micro-climate at a Korean Fir (Abies koreana Wilson) forest at 10 minutes interval in 2016 on Mt. Hallasan National Park, Jeju Island, Korea

  • Kim, Eun-Shik;Cho, Hong-Bum;Heo, Daeyoung;Kim, Nae-Soo;Kim, Young-Sun;Lee, Kyeseon;Lee, Sung-Hoon;Ryu, Jaehong
    • Journal of Ecology and Environment
    • /
    • v.43 no.2
    • /
    • pp.226-245
    • /
    • 2019
  • To understand the dynamics of radial growth of trees and micro-climate at a site of Korean fir (Abies koreana Wilson) forest on high-altitude area of Mt. Hallasan National Park, Jeju Island, Korea, high precision dendrometers were installed on the stems of Korean fir trees, and the sensors for measuring micro-climate of the forest at 10 minutes interval were also installed at the forest. Data from the sensors were sent to nodes, collected to a gateway wireless, and transmitted to a data server using mobile phone communication system. By analyzing the radial growth data for the trees during the growing season in 2016, we can estimate that the radial growth of Korean fir trees initiated in late April to early May and ceased in late August to early September, which indicates that period for the radial growth was about 4 months in 2016. It is interesting to observe that the daily ambient temperature and the daily soil temperature at the depth of 20 cm coincided with the values of about 10 ℃ when the radial growth of the trees initiated in 2016. When the radial growth ceased, the values of the ambient temperature went down below about 15 ℃ and 16 ℃, respectively. While the ambient temperature and the soil temperature are evaluated to be the good indicators for the initiation and the cessation of radial growth, it becomes clear that radii of tree stems showed diurnal growth patterns affected by diurnal change of ambient temperature. In addition, the wetting and drying of the surface of the tree stems affected by precipitation became the additional factors that affect the expansion and shrinkage of the tree stems at the forest site. While it is interesting to note that the interrelationships among the micro-climatic factors at the forest site were well explained through this study, it should be recognized that the precision monitoring made possible with the application of high resolution sensors in the measurement of the radial increment combined with the observation of 10 minutes interval with aids of information and communication technology in the ecosystem observation.

Optimal Power Control Strategy for Wind Farm with Energy Storage System

  • Nguyen, Cong-Long;Lee, Hong-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.726-737
    • /
    • 2017
  • The use of energy storage systems (ESSs) has become a feasible solution to solve the wind power intermittency issue. However, the use of ESSs increases the system cost significantly. In this paper, an optimal power flow control scheme to minimize the ESS capacity is proposed by using the zero-phase delay low-pass filter which can eliminate the phase delay between the dispatch power and the wind power. In addition, the filter time constant is optimized at the beginning of each dispatching interval to ensure the fluctuation mitigation requirement imposed by the grid code with a minimal ESS capacity. And also, a short-term power dispatch control algorithm is developed suitable for the proposed power dispatch based on the zero-phase delay low-pass filter with the predetermined ESS capacity. In order to verify the effectiveness of the proposed power management approach, case studies are carried out by using a 3-MW wind turbine with real wind speed data measured on Jeju Island.

Star Formation in Nuclear Rings of Barred-Spiral Galaxies?

  • Seo, Woo-Young;Kim, Woong-Tae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.39.2-39.2
    • /
    • 2013
  • We use grid-based hydrodynamic simulations to study star formation history in nuclear rings of barred-spiral galaxies. In our previous study, we concentrated on bar-only galaxies without spirals, finding that the star formation rate (SFR) in a nuclear ring exhibits a strong primary burst at early time before decreasing to below 1 $M_{\odot}/yr$ at late time. The rapid decline is caused by the paucity of the gas in the bar region, due to early massive gas inflows to the nuclear ring. Since star formation in nuclear rings is observed to be sustained for about 1-2 Gyr, this requires mechanisms to supply the gas to the bar regions. In this work, we study the effect of spiral arms on the radial gas inflows and related star formation in the nuclear rings. We show that spiral arms are efficient to remove angular momentum of the gas to cause significant gas inflows to the bar region, provided the patten speed of the arms is much smaller than that of the bar. The inflowing gas is added to a nuclear ring, making the ring SFR episodic over a long period of time. The time interval of multiple bursts of star formation is a few tens to hundred million years, with the mean peak SFR of ${\sim}5M_{\odot}/yr$, consistent with observations of M100.

  • PDF

A Design and Control of Bi-directional Non-isolated DC-DC Converter with Coupled Inductors for Rapid Electric Vehicle Charging System

  • Kang, Taewon;Kim, Changwoo;Suh, Yongsug;Park, Hyeoncheol;Kang, Byungil;Kim, Daegyun
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.429-430
    • /
    • 2011
  • This paper presents a simple and cost-effective stand-alone rapid battery charging system of 30kW for electric vehicles. The proposed system mainly consists of active front-end rectifier of neutral point clamped 3-level type and non-isolated bi-directional dc-dc converter of multi-phase interleaved half-bridge topology with coupled inductors. The charging system is designed to operate for both lithium-polymer and lithium-ion batteries. The complete charging sequence is made up of three sub-interval operating modes; pre-charging mode, constant-current mode, and constant-voltage mode. The pre-charging mode employs the staircase shaped current profile to accomplish shorter charging time while maintaining the reliable operation of the battery. The proposed system is able to reach the full-charge state within less than 16min for the battery capacity of 8kWh by supplying the charging current of 67A. The optimal discharging algorithm for Vehicle to the Grid (V2G) operation has been adopted to maintain the discharging current of 1C. Owing to the simple and compact power conversion scheme, the proposed solution has superior module-friendly mechanical structure which is absolutely required to realize flexible power expansion capability in a very high-current rapid charging system.

  • PDF

Hydraulic Model Tests for the Distribution of Wave Height around the Ieodo Underwater Rocks (이어도 주변 파고분포에 대한 수리모형실험)

  • Chun Insik;Shim Jae-Seol
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.17 no.1
    • /
    • pp.55-59
    • /
    • 2005
  • The present data concerns the wave height distribution around the Ieodo underwater rocks and it was obtained from a 3D hydraulic model experiment which was performed in 1999 by Konkuk University and Korea Ocean Research and Development Institute. The experiment was separately undertaken for 4 different wave directions (NNW, SE, S, NNW) under which wave heights were measured at every 1m interval within the preset grid area, 16m×18m. It was observed that the wave breaking occurred on the top of the Ieodo model for all wave directions. This data may be effectively used for improving or verifying the performance of numerical wave propagation models in the area with the local breaking wave zones.